
Math 250A, Fall 2004
Homework Assignment #9

Last assignment, due December 9, 2004

Prove Corollary 1.4 on page 263.

In the Galois correspondence between subgroups of Gal(K/k) and fields between k and K,
let I be the subgroup of Gal(K/k) that corresponds to F ∩ F ′. Then I contains both H
and H ′ because F ∩F ′ is contained in both F and F ′. In the other direction, suppose that
J is a subgroup of Gal(K/k) that contains both H and H ′. Then the field corresponding
to J is contained in both F and F ′ and is therefore in the intersection F ∩F ′. Accordingly,
J contains I. Therefore I is the smallest subgroup of Gal(K/k) that contains H and H:
it’s contained in any such subgroup. Moral: this problem really is “obvious” once you
understand the correspondence between fields and groups.

Problems from Chapter VI: 1 (a–e), 5, 6, 7, 9, 11, 15.

1. Part (a): The polynomial x3 − x − 1 is irreducible over Q for various reasons. The
simplest way to see that it’s irreducible is to use the Integral Root Test on page 185 and
to observe that ±1 are not roots. The Galois group is then either A3, the cyclic group of
order 3, or the symmetric group S3. To decide between the two alternatives, we compute
the discriminant of the polynomial. (All this is on page 270.) Here, the discriminant
is −23, which is a non-square. Thus the Galois group is S3.

Part (b): By Eisenstein’s criterion for the prime 2, x3 − 10 is irreducible over Q. The
splitting field of the polynomial contains the field of cube roots of 1, which is the quadratic
field Q(

√
−3). Thus the Galois group has order divisible by 2. Since we know (as in part a)

that the Galois group is either A3 or S3, we conclude that it must be S3, as in the previous
part. Note, for the next part, that the splitting field of x3 − 10 has a unique quadratic
subfield; this follows, via the Galois correspondence, from the fact that S3 has a unique
subgroup of index 3. The unique quadratic subfield of the splitting field is then the one
that we know about, namely Q(

√
−3).

Part (c): Let K1 be the splitting field of x3− 10 and let K2 be the splitting field of x2− 2;
thus K2 = Q(

√
2). By the discussion at the end of the previous part, we know that

K1 ∩ K2 = Q. In Theorem 1.14 on page 267, take k = Q. The Galois group of K1K2

over Q is then seen to be S3 × Z/2Z, a group of order 12. The Galois group of K1K2

over K2, which is what we want to calculate, is the same group as the Galois group of K1

over K1 ∩K2 = Q, which was S3.

Part (d): In view of all of our discussion above, I hope that you will see that the answer
here is A3.

Part (e): A blast from the past: we’re back to part (a). The field Q(
√
−23) is the discrim-

inant field: the splitting field of x3 − x− 1 contains Q(
√
−23) because the discriminant of

the polynomial is −23. Thus we are in the same situation as in part (d), which is to say
that the Galois group is once again A3.

5. The first part is a fairly straightforward abstraction of what we saw already in exercises
1c and 1e. Namely, let K1 be the splitting field of f and let K2 be the splitting field of g.



Things are set up so that the Ki are Galois over k and so that the Galois groups of K1/k

and K2/k are S3 and Z/2Z, respectively. Further, the assumption k(
√

D) 6= k(
√

c) means
that K2 is not contained in K1. Accordingly, K1 ∩K2 = k. We know from Theorem 1.14
that the Galois group of K1K2 over k is the product of the two groups S3 and Z/2Z; this
product has order 12.

For the second part, we view the degree [k(γ) : k] as the number of conjugates of γ = α+β
over k. The conjugates of γ are simply the images σ(γ) as σ runs over the Galois group
of K1K2/k. The number α has 3 conjugates, while the number β has two conjugates;
thus, γ has at most 6 conjugates. The point, however, is that Gal(K1K2/k) is the product
of Gal(K1/k) and Gal(K2/k), by Theorem 1.14. This means, concretely: if you have a
conjugate σ1(α) with σ1 ∈ Gal(K1/k) and a conjugate σ2(β) with σ2 ∈ Gal(K2/k), there
is a σ ∈ Gal(K1K2/k) that induces σ1 on K1 and σ2 on K2. We then have σ(γ) =
σ1(α) + σ2(β). There are 3 choices for the first term and 2 for the second; thus there are
6 choices for the sum.

6. In the first part, K/E is a quadratic extension, with Gal(K/E) being generated by
σ2. We have set things up in the usual way: K = E(

√
γ) with γ ∈ E. Thus the non-

trivial conjugation σ2 sends
√

γ to −√γ. We have given a name to a specific square

root of γ in K: this is α. Let z =
σα

α
. Then certainly z2 =

σ(α2)
α2

=
σγ

γ
. Also

z ·σ(z) =
σα

α

σ2(α)
σα

=
σ2(α)

α
= −1 because σ2 takes α =

√
γ to its negative. Since σ sends

z to its negative reciprocal, σ2 sends z back to z. Thus z is fixed by σ2, so it lies in E.

In the second part, we have only E/k, and there’s a τ playing the role of σ2. The element
z such that τ : z 7→ −1/z is given to us. Note that τ sends z2 to 1/z2. We prove that
z2 6= −1: if z2 = −1, then z and τz are the two roots of X2 + 1 = 0, so their product
is 1, not −1. (Note that 1 and −1 are distinct because the characteristic is not 2.) We

take γ =
1

1 + z2
; then τγ/γ = z2, as required. We continue by letting α be a square root

of γ. As in the statement of the problem, put K = k(α) and let σ be an extension of τ to
a map K → K. (Note that K contains E because E is generated over k by α2.) Observe
that σ(α2) = σ(γ) = z2γ = z2α2. Thus

σα

zα
has square 1, so that σα = ±zα. Prompted

by the book, we change the sign of z if necessary to have σα = zα. Since z is in E, z is
in K, so that σ maps α back to K. Thus σ is an automorphism of K. Using the equation
σα = zα, we get σ2(α) = σ(z)σ(α) = −α, and then σ4(α) = 1. Thus σ has order divisible
by 4. Since K/k has degree 4, σ must be exactly of order 4, and K/k is seen now to be a
cyclic extension of degree 4. I think that we’ve done the whole problem now.

7. For part a, assume that we have K ↪→ L, where L/Q is cyclic of degree 2n, with n
even. Without loss of generality, we can and will suppose that L is a subfield of C. Let τ
be the restriction to L of the complex conjugation map C → C, and let σ be a generator
of Gal(L/Q). We must have τ = σn because σn is the unique element of Gal(L/Q) of
order 2. Note now that the restrictions to K of both τ and σ are of order 2: τ gives
a non-trivial automorphism of K because

√
a is imaginary, while σ gives a non-trivial

automorphism of K because the fixed field of σ is Q. If α =
√

a, then σ(α) = τ(α) = −α.
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On the other hand, the formula τ = σn shows that τα = (−1)nα. Since n is even, we have
a contradiction.

For part b, we can use the analysis of problem 6. Start with E = Q(
√

5), and let τ be the
non-trivial conjugation of E over Q. Let z = 2 −

√
5. Then zτz = (2 −

√
5)(2 +

√
5) =

4 − 5 = −1. If γ = 15 + 6
√

5, then
τγ

γ
= z2 (I hope). If α is a square root of γ, then

Q(α) if cyclic of degree 4 over Q. Note that γ satisfies t2 − 30t + (225 − 180) = 0 or
t2 − 30t + 45 = 0 and α satisfies x4 − 30x2 + 45 = 0, which is the polynomial we want,
except for a sign. It looks like I should have taken γ = −15 + 6

√
5; make the appropriate

changes. . . .

Part c, now. This is similar; start with z =
√

2− 1 in E = Q(
√

2).

9. For each i, there is an isomorphism k(θ) ∼→ k(θi) that we know about: it takes a
polynomial g(θ) in θ with coefficients in k to the number k(θi). By hypothesis, if i = 2 we
get an automorphism σ of K = k(θ). This automorphism is non-trivial since it does not
fix θ. Let G be the subgroup of Autk K that is generated by σ, and let E be the fixed field
of G. We have k ⊆ E ⊆ K. By Artin’s theorem, K/E is a Galois extension with group G.
Since G is non-trivial, E is smaller than K. By the tower law (since [K : k] is prime), we
have E = k. Thus K/k is Galois. Its Galois group is cyclic: it’s the cyclic group generated
by σ.

11. Our situation is that k is a subfield of R and that we are looking at roots of f
in C. We let¯be the complex conjugation map on C. We suppose that there is a root α
such that ᾱ 6= α and such that αᾱ = 1. Note that ᾱ is again a root of f because k
is in R. Thus α is a root of f such that 1/α is also a root of f . All roots of f are of
the form σα, where σ is an automorphism of the splitting field of f over k. We have
f(1/σ(α)) = σ(f(1/α)) = σ(0) = 0, so that 1/σ(α) is a root of f . Thus the reciprocal
of each root of f is again a root of f . It is easy now to see that f has even degree.
Indeed, the map α 7→ 1/α is an involution on the set of roots of f . This involution has no
fixed points—the fixed points would be ±1, numbers that are not roots of f because f is
irreducible with a non-real root.

15. Let H for us be Gal(K/F ) and let N be the group that Lang calls H: the group of
all g ∈ Gal(K/k) such that gF = F . Note that gHg−1 = H if and only if H and gHg−1

have the same fixed field. The fixed field of H is F while the fixed field of gHg−1 is gF ,
as we saw in class last week. Hence g belongs to N if and only if gHg−1 = H, i.e., if and
only if g normalizes H.
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