Folland: Real Analysis, Chapter 5
Sébastien Picard

Problem 5.7
Let X be a Banach space.

a. If T e L(X,X) and ||I = T|| < 1 where I is the identity operator, then T is invertible; in fact,
the series > o (I —T)" converges in L(X,X) to T™'.

b. If T € L(X,X) is invertible and ||S — T|| < ||[T7Y|7, then S is invertible. Thus the set of
invertible operators in open in L(X, X).

Solution:
(a) First, we notice that ) °(I —T')" converges in L(X, X). Since v = || = T|| < 1,

- n - n 1
SNI=T) <Y I =T|" = —— < 0.
n=0 n=0 1 v

Therefore, Y °( — T')™ converges absolutely. Since X is complete, so is L(X, X), and therefore
Yoo (I =T)"™ converges in L(X, X). Denote X =" °(/ —T)".

Next, we show that T X and X7T are equal to the identity to conclude that T has a two-sided
inverse and is a bijection. First, we derive the following:

([—T)X:i([—T)"“:i(I—T)":i(]—T)"—]:X—I.

It follows that T'X = I. The same calculation yields

X(I-T)= i(I—T)"“ =X -1

n=0

Therefore T" has a two-sided inverse and is a bijection.

To complete the proof, we must show that 7-' = X is bounded. Denote the partial sums as
Sp =1 (I =T)" Then, using continuity of the norm to exchange the limit, we obtain

_ : . . ; 1
17| = [[lim S,z|| = lim || Spa|| < lim > (|7 = T|[||]| = GHIH-
=0

Therefore, ||T7!| < co.

(b) We have

1ST~ = 1| = [|[(ST™ = DTT Y| < [[S = T1| - |IT7}]| < L.



From part (a), we conclude that ST' = A € L(X, X) is invertible. Then S = AT is the product
of two invertible operators. S is thus a bijection with inverse T-'A~!, and is bounded since

IS~ < N1 1A

Problem 5.10

Let LL([0,1]) be the space of all f € C*1([0,1]) such that f* =Y is absolutely continuous on [0, 1]
(and hence f%) exists a.e. and is in L([0,1]). Then ||f]] = Sk fo |fU)(2)|dx is a norm on L}([0,1])
that makes Li.([0,1]) into a Banach space.

Solution:

It is immediate that L} ([0, 1]) is a normed vector space. The hard part is to show that L ([0, 1])
is complete.

First, we deal with the case k = 1. Let >.{° f,, be an absolutely convergent series in L1 ([0, 1]).
Written explicitely, this means that

gllfn\ﬁ =i ([ twlas+ [ 1rolas) <o

Therefore, > ° [ | fu| < 00, and by Theorem 2.25, ° f,, converges a.e. to a function in L*([0, 1]).
By the fundamental theorem of calculus, for some a € [0, 1] we have

Zm |— Z/ L0t + | fala)] < .

By completeness of the norm |.|, we see that > (" f,(z) converges with respect to |.| for each
x € [0,1].

Now, we also have that Y (" ['|fi] < oo, so again by Theorem 2.25, >"7° f/ converges a.e. to a
function g € L([0,1]). By invoking Theorem 2.25 again and the fundamental theorem of calculus,

we see that for all z € [0, 1],
' dt = ' E fl d

(t)dt + fa(a

Therefore, f is absolutely continuous on [0, 1], and furthermore g(t) = f'(¢) a.e. We can now see
that >"1° f, is a convergent series in L3 ([0, 1]):
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Hf—an\Hz/O |f—an|+/0 -3 f
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g/o Z;Vmu/o Z;Vlfnl

Zg(/ollfnlJr/OlW),

which goes to zero as n — co. By Theorem 5.1, L1([0,1]) is complete.

We proceed by induction on k. The arguments are similar to the ones above, so they will not be
repeated in detail. Let ) (" f, be an absolutely convergent series in Lj_,([0,1]). Then »°1° f, is an
absolutely convergent series in Lj.([0, 1]), and by induction hypothesis, > 7° f, converges to a function
f with respect to L}.([0,1]). Furthermore, y {° £ converges a.e. to f® with respect to |.|. By the
fundamental theorem of calculus, for some a € [0, 1] we have

D@ =)

[ w10

<3 / FED @)t + |7P(a)] < oo.

n=1 a
By completeness of the norm |.|, we see that ) ° £ () converges with respect to |.| for each
x € [0,1]. We can now repeat the same argument as done before to show that f*) is absolutely
continuous and y |° (kL) converges almost everywhere to f*#+9. Then

al N 1 N
||f_z.fn||]1g+1:||f_2fn||11€_|_/ |f(k+1)_2f£k+l)|
n=1 n—1 0 —

N e 1
<IIF = fll+ Y [ 1R
n=1 n=N 0

which goes to zero as N — oo, showing completeness of L;_ ([0, 1]).

Problem 5.11
If 0 < a <1, let Ay([0,1]) be the space of Holder continuous functions of exponent o on [0,1]. That
is, f € Ao ([0,1]) iff || f]|a, < 00, where

1l = 1fO)] +  sup D ZIW]

z,y€[0,1],x#y |LL’ - y|a

a. || - ||a, s a norm that makes A, ([0, 1]) into a Banach space.
b. Let Ao ([0, 1]) be the set of all f € A,([0,1]) such that
|f(z) = f(y)]

— 0asxz —y, forall y € [0,1].
[z =yl



If o < 1, A ([0,1]) is an infinite-dimensional closed subspace of A, ([0,1]). If a =1, A([0,1]) contains
only constant functions.

Solution:
a. We first show the triangle inequality. Let f, g € A,([0,1]).

|f(z) +g(x) — fly) — g(y)]

1f +9glla. = [F(0) +9(0)[ +  sup

z,y€[0,1],x7#y |LE - y‘a
f(x) = fly g(x) —gly
< 7O+l + sup (LD, lole) = slo)
z,y€(0,1],x#y |LL’ - y‘ ‘SL’ - y|

< 1 laa + llgllaa-

Scalar multiplication is shown similarly. If || f||s, = 0, then |f(0)| = 0 and |f(z)|/|z|* = 0 for all
x # 0. Hence f = 0.

We now show completeness using Theorem 5.1. Let {f,} be a sequence in A,([0,1]) such that
S U falla. < 00. Then for any x € (0, 1], we have

Zlf Z [FO)+ [ (z) = F(0)]

8 |

§Z|f(0)|+w
<3 [[flln. < oo.

When = = 0, we have Y2 [f(0)] < Y07 | f]]a. < 00.

Therefore, Y f,.(z) converges absolutely with respect to | - | for all z € [0,1]. Define

We show f € A,([0,1]). Let z,y € [0,1], * # y. Then

@) = ) _ 150 fule) — fuw)]

< f: |[fn(2) = fu(y)]

< Z |1 fallaa < o0
n=1



This shows that

|f(z) = fy)]

sup " < 00.
eyel0laty 1T — Yl

Since |f(0)|] < oo, we see that ||f||a, < oco. To complete the proof, we show »_ f, — f with
respect to || - ||a,:

N e o)
1Y fo = Fllae = 11D Fallaa < D llfallae =0,
n=1 n=N n=N

as N — oo.

b. Let a < 1. First, we show A\,([0,1]) is a subspace of A,([0,1]). If f,g € A\u(]0,1]), ¢ € R,
then for all y € [0, 1]:

(@) + cg(z) = fly) = cgy) _ [f (&) = F(Y)l

|z — ylo T |-yl

. lg(z) — g(y)|

T |z — y|«

— 0,

as ¥ — y since % — 0 and % — 0 by assumption. Therefore A, ([0, 1]) is a subspace of
Aa([0,1]).

We now show that A\, ([0, 1]) is closed. Suppose {f.} € A([0,1]) and f, — f with respect to
|| - ||a,- Then there exists N € N such that || fx — f||a, < €/2. Let y € [0,1]. Also, there exists 6 > 0
such that when |z — y| < J, we have

|fn(z) = fn(y)l

|z — gyl

< €/2.

Hence, when |z — y| < 0, we get

(@) = W)l 1 (@) = fu(@) = (Fly) = i@ | (@) = ()l
|$—y‘a - |I—y‘0f |$—y|0¢
< |Ifx = flla, + lfN<|9;>_—yj|f§<y>|
<€/2+€/2=c¢.

Therefore, % — 0 as x — y for all y € [0,1]. Hence f € \,([0,1]) and A\,([0,1]) is closed.
We now show that A,([0,1]) is infinite dimensional. Consider f, : [0,1] — R, f,(z) = 2" for

n € N. Clearly the f,, are independent, so to complete the proof of infinite dimensionality we need to
show that f,, € A.([0,1]) for all n € N. Indeed,

n n n—=1 _k n—k—1 n—1
— x — T
|z — y"| _ (@ —y) (iso 2"y )| — |z —y|e gk 0,
Y Y =0




as x — y for all y € [0, 1].

If « = 1, we have f € A,([0,1]) if and only if for all y € [0,1], limx%y% = 0, which

happens if and only if f'(x) = 0 for all x € [0, 1], which happens if and only if f is constant.

Problem 5.19
Let X be an infinite-dimensional normed vector space.

a. There is a sequence {x;} in X such that ||x;|| =1 for all j and ||x; — xx|| > 1/2 for j # k.
(Construct x; inductively, using Exercises 12b and 18.)

b. X s not locally compact.

Solution:

a. Choose any vector r; € X such that ||z1]| = 1. Then M; = Cx; is a closed proper subspace
by Exercise 18. Invoking Exercise 12b with € = 1/2, we can find x5 € X such that ||zs|| = 1 and
inf{||m + z2|| : m € M} > 1/2. In particular, ||xg — x1|| > 1/2.

We can now proceed inductively. Suppose there are {zy,...,x;} vectors such that ||z;|| = 1
for all 1 < j < k and ||z; — xx|| > 1/2 for j # k. Then M, = span{xy,...,z;} is a closed
proper subspace of X. From Exercise 12b, there exists a x541 € X such that ||zx41|| = 1 and

inf{||m + xp41|| : m € M} > 1/2. In particular, ||z41 — 2;]| > 1/2 for 1 < j < k. The sequence can
therefore be constructed by induction.

b. Suppose X is locally compact. Then there exists a compact set K containing the origin and a
0 > 0 such that U = {z € X : ||z|| < 0} is contained in K. Take the sequence {z;} constructed in
part (a), and consider the rescaled sequence {y;} = {(1/2)dz;}. Then {y,} is a sequence contained
in K, and hence there must be a convergent subsequence. However, ||y; — yx|| > (1/4)0 for all i # k,
so no subsequence can be Cauchy. This contradiction completes the proof.

Problem 5.22
Suppose that X and Y are normed vector spaces and T € L(X,Y).

a. Define TV :Y* — X* by TV'f = foT. Then Tt € L(Y*, X*) and ||TT|| = ||T||. TT is called the
adjoint or transpose of T.

b. Applying the construction in (a) twice, one obtains T € L(X**,Y**). If X andY are identified
with their natural images X and Y in X** and Y**, then T X =T.

c. TT is injective iff the range of T is dense in'Y .

d. If the range of T' is dense in X*, then T is injective; the converse is true if X is reflexive.

Solution:
a. We first notice that TTf € X* for all f € Y*, since T'f = f o T is the product of two bounded
linear operators, and hence is itself a bounded linear operator. Next, we show TT € L(Y*, X*):
THef) = (cf)oT =c(foT)=cT"f.
T f+g)=(f+g)oT=foT+goT=T"f+T'g.



To see that TT is bounded, take f € L(Y,C), and since T' € L(X,Y), using a property of the
product of two bounded linear operators we obtain

IO = 1F o TI < T IAN-

Therefore TT € L(Y*, X*), and since the operator norm of 77 is the infimum of all such bounds,
T < |-

We now show ||T'|| < ||T7|| by proving ||Tz|| < ||TT]| ||z|| for all z € X. If Ta = 0, the inequality
holds trivially, so suppose Tz # 0. Then by Theorem 5.8, there exists a f € Y* such that ||f]| =1
and (T7f)(x) = f(Tx) = ||Tx|].

1Tl = (T ) @) < N 2l] < Nl = 1T ]

This shows that ||TT|| = ||T|.

b. First, we show that T7a € Y** for all @« € X**. Indeed, TTTav = « o T' is the product of
two bounded linear operators, hence T a € Y**.
Next, we show that T is a bounded linear operator:

T (ca) = (ca) o TV = T ().
THa+p)=(a+B)oTT =aoTl +BoT" =T (a)+TM(A).
1T ()] = [Jaco TM|| < [IT7] {|e]]-

It will now be shown that 71| X = T after identifying X,Y with X, Y. For any f € Y*, we have

~

(TH&)(f)=d0T f=d0(foT)=foT(z)=T(x)f.
Hence T12 = T(x).

c. Suppose that the range of T is not dense. Then there exists a non-empty open set U C YV
such that U N Range(T) = 0. Since Range(T) is a closed subspace and there exists a y € U, by
Theorem 5.8a, there exists f € Y* such that f(y) # 0 and f|Range(T) = 0. In other words, TTf = 0
but f # 0, and hence T is not injective.

Conversely, suppose that the range of 7" is dense in Y. If there exists a f € Y™ such that
TTf =0, then foT(z) =0 for all z € X. Hence f is zero on a dense subset of Y, and by continuity of
f it follows that f is identically zero on Y. (This is known fact from topology, also stated in Exercise
4.16b and proved on the 564 final exam.) Therefore, T is injective.

d. Suppose the range of T is dense in X*. If T(z) = 0 for some z € X, then consider the as-
sociated linear functional £ € X**. For any f € Y*, we have

H(THf)=a(foT)= foT(x)=0.

7



Therefore, & is zero on the range of 77, and hence by continuity, 4 is identically zero on all of X*.
Therefore x = 0, and T is injective.

On the other hand, suppose the range of T is not dense in X* and X is reflexive. There ex-
ists a non-empty open set U C X* such that U Nrange(TT) = (). By Theorem 5.8a, there exists a
non-zero o € X** such that a|range(TT) = 0. Since X is reflexive, there exist a # # 0 € X such that
oa=17.

Suppose that Tx # 0. Then by Theorem 5.8b, there exists a f € Y* such that f o Tz = ||Tx||.
This leads to the following contradiction:

0=a(T"f) =2(foT) = foTl(z) =T ()|l

Therefore, we have found a non-zero x € X such that Tz = 0. Hence T is not injective.

Problem 5.31
Let XY be Banach spaces and let S : X — Y be an unbounded linear map (for the existence of which,
see §5.6). Let I'(S) be the graph of S, a subspace of X X Y.

a. I'(S) is not complete.

b. I'(S) Define T : X — I'(S) by Tx = (x,Sz). Then T is closed but not bounded.

c. T71:T(S) — X is bounded and surjective but not open.

Solution:

a. Suppose I'(9) is complete. Since X x Y is a metric space, a subset F is closed if and only if the
limit of every convergent sequence in F' belongs to F. Any convergent sequence in I'(S) is Cauchy,
and hence its limit is in I'(S) by completeness. Therefore, I'(S) is closed. By the Closed Graph
Theorem, S is bounded. This is a contradiction, hence I'(S) is not complete.

b. First, we show T is not bounded. Choose any C' > 0. Then there exists an x € X such
that ||Sz|| > C||z|| since S is unbounded. Using the definition of the product norm, we obtain

T[] = max{]|]], [[Sz[|} > C|||].

Hence T is unbounded. Next we show that I'(T") € X x I'(S) is closed. Suppose a sequence
{(zn, (xn, Sz,))} € I(T') converges to an element (z, (Z,S5%)) € X x I'(S). Then

|on — || < max{||zn — 2], [[(zn, Szn) — (2, S} = |[(2n, (20, Stn)) = (2, (2, 57))[] = 0

as n — 0o, and lim z,, = x. Similarly,



[|zn = Z|| < max{[|zn — 2|, [[Szn — ST)|
= ||(z,, — 2, Sz, — ST)||
= [|(2n, Sn) — (2, ST)]|
< max{||zy, — ], [|(zn, S2n) = (2, ST)|}
= [|(&n, (20, Sn)) = (2, (7, ST))[[ = 0

as n — oo, and limz,, = Z. Therefore, ¥ = = and (z, (%, 5%)) = (z, (x, Sx)) € ['(T). This shows that
T is closed.

c. We have T7!: T'(S) — X defined as T—!((x, Sz)) = x. It is clear that ToT ' =T"1oT = I and
hence 77! is surjective. To see that 7! is bounded, notice

177 ((z, S2)| = ||2]] < max{]|]], [|Szl[} = [|(z, Sz)II,

for all (z, Sz) € I'(S).
Lastly, if T—! was open, then T would be continuous. However, as shown previously, 7" is un-
bounded, hence 7! is not open.

Problem 5.42
Let E,, be the set of all f € C([0,1]) for which there ezists xy € [0,1] (depending on f) such that
|f(z) = f(zo)| < nlx — x| for all x € [0,1].

a. E, is nowhere dense in C([0,1]). (Any real f € C([0,1]) can be uniformly approzimated by
a piecewise linear function g whose linear pieces, finite in number, have slope £2n. If ||h — g||, is
sufficiently small, then h ¢ E,.)

b. The set of nowhere differentiable functions is residual in C([0,1]).

Solution:
a. First, we show that any real f € C(]0,1]) can be uniformly approximated by a piecewise linear
function .

Let € > 0. Since f is uniformly continuous on [0, 1], there exists a § > 0 such that |f(z) — f(y)| <
€/2 when |xr —y| < . Choose N € N such that 1/N < 4. Let z; = i/N, where i is an integer such
that 0 <1i < N. Define ¢ € C(]0, 1]) such that ¢(x;) = f(z;) and ¢ is linear on [z;, z;41].

Now take x € [0, 1], supposing x € [z;, z;41]. Then
(@) = f2)] < [¥(x) = ¥(z:)] + [¢(:) — f(@)]

< |Y(ig1) — V()| + [v(2:) — f(2)]
= |f(zig1) — fx)| + | f(z;) — f(z)| <e/2+€/2 =€



Now, since f can be uniformly approximated by a piecewise linear function ¢, it is easy to see
that we can uniformly approximate 1) by a function g whose linear pieces, finite in number, have slope
of absolute value greater than 2n. Indeed, if one of the linear pieces of 1 has slope of absolute value
less than 2n, approximate it by a see-saw function whose right-hand derivative has absolute value of 2n.

We show that each E, is closed. Suppose (fz) is a sequence in E,,, and f — f in C([0,1]). Then
for each fy, there exists a x5, € [0, 1] such that | fx(z) — fr(xx)| < n|z — x|. We obtain a bounded se-
quence (zy) in [0, 1], which must have a convergent subsequence. Denote the limit of this subsequence
as xg. Let € > 0. Choose m € N such that ||f — f.|l. <€/2 and |f.(x) — fin(x0)| < n|x — 20|. Then

|f(2) = f(o)| < [f (@) = fin(@)| + [ () = fru(20)| + [ fm(20) — f(0)]
< 2||f - fm||u + |fm(x) - fm($0)|

< e+ n|r — x|

Since this holds for all € > 0, f € E, and hence E,, = E,,. We now show that E, is nowhere dense
in C([0,1]). If f € E,,, suppose there exists a ball of radius € > 0 centered at f contained in E,,. Take
g as above, ie, a piecewise linear function such that ||f — g|| < € whose finitely many linear pieces
have slope of absolute value greater than 2n. Then for any z, € [0, 1], there exists a y sufficiently
close to xg such that

l9(y) — g(x0)]

> 2n.
|?/ —ZE0|

Therefore, g ¢ E,. Hence there is no open ball centered at f contained in E, = E,, so E, is
nowhere dense in C([0, 1]).

b. Let A denote the set of functions in C([0,1]) that are nowhere differentiable. We show that
A° CUE,. If f € C([0,1]) is differentiable at some z( € [0, 1], then there exists §, M > 0 such that if
|x — xo| < 0, then

|f(x0) — f()|

|zo — |

< M.

On the other hand, if |x — x| > §, we see that

|f(zo) = (@) _ 2[|fllu

‘ZL’O —LU‘ - 0

It follows that if n € N is such that n > M and n > 2||f||./0, then f € E,. Hence
A | JE.,
and thus, A is the subset of a meager set and is hence also meager. Therefore, A is the complement

of a meager set. This shows that the set of nowhere differentiable functions in residual in C(]0, 1]).

10



Problem 5.48
Suppose that X is a Banach space.
a. The norm-closed unit ball B = {x € X : ||z|| < 1} is also weakly closed. (Use Theorem 5.8d.)
b. If E C X is bounded (with respect to the norm), so is its weak closure.
c. If F C X* is bounded (with respect to the norm), so is its weak* closure.
d. Every weak*-Cauchy sequence in X* converges. (Use Ezercise 38.)

Solution:
a. Let (z,) be a net in B that converges weakly to z € X. By Theorem 5.8d, ||xo|| = ||%o]| for all
xo € X. Hence for every z, in the net, we have

ba € B ={a€ X ||o|| < 1}.

Since 7, (f) = f(za) = f(x) = 2(f) for all f € X*, we see that the net (Z,) converges to Z in
the weak™ topology on (X*)*. Since the weak™ topology is Hausdorff, any compact set is closed, and
hence by Alaoglu’s Theorem, & € B**. It follows that ||z|| = ||Z|| < 1, and = € B. Therefore B is
weakly closed.

b. If E C X is bounded, then there exists a C' > 0 such that ||z|| < C for all x € E. Then
[|(1/C)zx|| <1 for all z € E. Let (z,) be a net in E that converges weakly to z € X. By continuity
of scalar multiplication, ((1/C)z,) converges weakly to (1/C)z, and by part (a), (1/C)x € B. Hence
||x|| < C. Therefore, the weak closure of E is bounded.

c. If FF C X* is bounded, then there exists a C' > 0 such that ||f||] < C for all f € X*. Let
(fo) be a net in F' that converges to f € X* in the weak™ topology. By continuity of scalar mul-
tiplication, the net ((1/C)f,) converges to (1/C)f in the weak* topology. Since ((1/C)f,) is a net
in B* = {f € X*:||f|| <1}, by Alaoglu’s Theorem, (1/C)f is also in B*. Hence ||f|| < C, and
therefore the weak™ closure of F' is bounded.

d. Let (f,) be a Cauchy sequence in X* with respect to the weak*® topology. Then for all z € X
| fn(x) = fr(x)| = 0 as n,m — oco. By completeness of C, lim f,,(x) exists for all x € X. By Exercise
38, if we define f(z) = lim f,,(x), then f € X*. It is clear that f,, — f in the weak™ topology.

Problem 5.57
Suppose that H is a Hilbert space and T € L(H,H).

a. There is a unique T* € L(H,H), called the adjoint of T, such that (T'x,y) = (x,T*y) for all
x,y € H. (Cf Ezercise 22. We have T* = V=TTV where V is the conjugate-linear isomorphism
from H to H* in Theorem 5.25, (Vy)(x) = (x,y).)

b. |T*|| = |T||, |T*T|| = ||T||?, (aS + bT)* =aS* + BT*, (ST)* = T*S*, and T** =T.

c. Let R and N denote range and nullspace; then R(T)* = N(T*) and N'(T)*+ = R(T*).
d. T is unitary iff T is invertible and T—' = T*.

Solution:

a. Define T* = V7'TTV. Then T* is the composition of bounded linear operators, hence T* is a
bounded linear operator. For all x,y € H, we have

11



(z,T7y) = (VI"y)(x)
= (VVT'TVy)(2)
= (T'Vy)(x)

= ((Vy) o T)(x)
= (Vy)(Tx)
= (Tz,y).

To show uniqueness, suppose there exists S € L(H,H) such that (Tx,y) = (x,Sz). Then
(x, T*y) = {(x,Sy), hence (x,(T* — S)y) = 0 for all x,y € H. In particular, ||(T* — S)y||* =
(T = S)y,(T*— S)y) =0 for all y € H, hence T* — S = 0.

b. First, we show T** =T. For all z,y € H,

(T"z,y) = (y, T*x) = (Ty,z) = (2, Ty).

Next, we show ||T*|| = ||T||. We know ||T|| = ||T7|| from Exercise 22, and we know ||V|| =
[[V=!|] = 1 since V is an isometry and an isomorphism. Hence,

17|l = [V T Wal| < [V IVI 2l = 1T [l

Thus we have shown ||T*|| < ||T'||. Combining this with the fact that 7" = T**, we obtain
T = 11T 1) < 11T

Next, we show ||T*T|| = ||T||?. For any = € H,

N7 Tel| < (ITIIT|] 2l = T ],

so ||T*T|| < ||T|[%. On the other hand,

| Ta|* = (Ta,Tx) = (x,T"Tax) = (VI*Tx)(x) < [|[VT*Ta|| ||z]| < [|TT| ||2[]*.
Therefore, ||T|| < ||T*T||*/2.
To see (aS + bT)* = aS* + bT*, notice that for all z,y € H,
(@S +0T)z,y) = a{Sz,y) +b(Tw,y) = a{z, S*y) + bz, T"y) = (x,aS"y + 0I"y) = (z, (@S* +bT")y).
To see (ST')* = T*5*, notice that for all z,y € H,
(ST, y) = (Tw,S"y) = (x,T"S"y).
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c. Let y € R(T)*. Then (y,Tx) = 0 for all z € H. Therefore (T*y,z) = 0 for all z € H, and
in particular, ||T*y||> = (T*y,T*y) = 0. Therefore y € N(T*). On the other hand, let x € N (T*).
Then (T*z,y) = 0 for all y € H. Hence (x,Ty) = 0 for all y € H, and x € R(T)*. Therefore,
R(T)* = N(T%).

Suppose z € N(T)*. Then (z,v) = 0 for all v such that Tv = 0. Let y € R(T*)*. Then
(Ty,w) = (y, T*w) = 0 for all w € H, hence ||Ty||* = (Ty, Ty) = 0. Therefore Ty = 0, so (z,y) = 0.
It follows that x € (R(T*)*)%. By Exercise 56, (R(T*)*)t = R(T*), hence x € R(T*). Therefore

N(T): C R(T*). On the other hand, let y € R(T*). Then there exists a sequence (T*z,) that
converges to y. If Tz = 0 for some z € H, then

(y,2) = im T x,, z) = lim(T"x,, z) = lim(x,, Tz) = 0.

Therefore y € N (T)*.
d. Suppose T is unitary. Then T is invertible by definition, and for all x,y € H,

(Tx,y) = Tz, TT 'y) = (x, T 'y).

It follows that 7-! = T™*. On the other hand, if T is invertible and T~! = T, then for all x,y € H,

(Tz,Ty) = (x, T~ 'Ty) = (x,y).

Problem 5.59
FEvery closed convex set K in a Hilbert space has a unique element of minimal norm. (If 0 € K, the
result is trivial; otherwise, adapt the proof of Theorem 5.24.)

Solution:
Let 0 = inf{||z|| : « € K}, and let {z,} be a sequence in K such that ||z,|| — J. By the
paralellogram law,
120 = 2l [* = 2||zall* + 2l|2m|[* = |20 + zml*

By convexity, (1/2)(x, + 2.,) € K. Therefore ||(1/2)(z, + .n)|| > 9§, hence

120 = @l * < 2l|al|* + 2[zm||* — 46%

As m,n — oo, this quantity goes to zero, hence {z,} is Cauchy. Let x = limx,. Then z € K
since K is closed and ||z|| = §, hence z is an element of minimal norm.

To show z is unique, suppose y € K is also such that ||y|| = §. Again, using the paralellogram
law and the fact that (1/2)(z +vy) € K,
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ly — 2|* = 2[|z* + 2l[yl|* — ||z + y||* < 26" + 20" — 46" = 0.

Hence y = .

Problem 5.64
Let H be a separable infinite-dimensional Hilbert space with orthonormal basis {u,}5°.

a. Fork € N, define Ly € L(H, H) by L3 anun) =D p anty_i. Then Ly — 0 in the strong
operator topology but not in the norm topology.

b. For k € N, define R, € L(H,H) by Ri(3_7 antin) = D1 nlpsr. Then Ry — 0 in the weak
operator topology but not in the strong operator topology.

c. RypLy — 0 in the strong operator topology, but LyRy = I for all k. (Use Exercise 53b.)

Solution:

a. There is some confusion in the statement of the question since ug is undefined, however it appears
after applying L. We proceed assuming ug = 0. Fix x € H. Then = = > a,u, for some coefficients
ay,. Applying Ly to x, we see that

oo oo
1Ll = 1S el = 3 fanl? =0
n=~k

n=k+1

as k — oco. Hence L — 0 in the strong operator topology.
However, ||Lg|| > 1 for all k. We can consider the vector ug, 1, and since ||ugi1|| =1,

[1Lill > || Lt ]| = 1.

Therefore L; does not converge to zero in the norm topology.

b. Let f € H*. Then there exists a y = Y byu, € H such that f(z) = (x,y). For any
r = Y ayu, € H, after some manipulations and applying the Cauchy-Bunyakovsky-Schwarz in-
equality, we obtain

|f(Ri(x))])* = \f@aiuﬁkw = \@ aiui+k,zbjuj>\2
|
|

[e.9]

(]

S 2
Z<aiui+k> bjuy)|
=1

1=1

||'M8

2
(@i, biprtivr) }

i=1

= }Zaibiﬁ-kf
=1

< () lail?) (> [b;P).
=1 =1tk
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Since Y77, |a;|* is finite and 3777, [b;|* — 0 as k — oo, we have f(Ry(x)) — 0 as k — 0, hence
Ry — 0 in the weak operator topology.

On the other hand, ||Ri(u1)|| = ||luisk|] = 1 for all k. Hence Rj does not converge to zero in
the strong operator topology.

c. Fix x € H. Then z = > a,u, for some coefficients a,,. Applying RyLj to z, we see that

o0 o0
|1 RiLiz|| = |[Re (D antin—i)||* = [|Re (D arsis)||?
n=~k i=1
o0
= || Z ak+iuk+i||2
i=1

o
= || Z [

n=k+1

00
= 2l

n=k+1

Hence ||RyLyx||* — 0 as k — 0. Therefore, RyLx — 0 in the strong operator topology.

On the other hand, if we apply Ly Ry on x = ) a,u,, we obtain

LyRyx = Lk(z Ut k)

n=1
oo
= Lk( E am—kum)
m=1+k
oo
- E A —kUm—k
m=1+k
oo
= E AplUpy = T
n=1

Hence L, Ry, = 1.
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