
Folland: Real Analysis, Chapter 5
Sébastien Picard

Problem 5.7
Let X be a Banach space.

a. If T ∈ L(X,X) and ||I − T || < 1 where I is the identity operator, then T is invertible; in fact,
the series

∑∞
0 (I − T )n converges in L(X,X) to T−1.

b. If T ∈ L(X,X) is invertible and ||S − T || < ||T−1||−1, then S is invertible. Thus the set of
invertible operators in open in L(X,X).

Solution:
(a) First, we notice that

∑∞
0 (I − T )n converges in L(X,X). Since γ = ||I − T || < 1,

∞
∑

n=0

||(I − T )n|| ≤
∞
∑

n=0

||I − T ||n =
1

1− γ
<∞.

Therefore,
∑∞

0 (I − T )n converges absolutely. Since X is complete, so is L(X,X), and therefore
∑∞

0 (I − T )n converges in L(X,X). Denote X =
∑∞

0 (I − T )n.

Next, we show that TX and XT are equal to the identity to conclude that T has a two-sided
inverse and is a bijection. First, we derive the following:

(I − T )X =

∞
∑

n=0

(I − T )n+1 =

∞
∑

n=1

(I − T )n =

∞
∑

n=0

(I − T )n − I = X − I.

It follows that TX = I. The same calculation yields

X(I − T ) =

∞
∑

n=0

(I − T )n+1 = X − I.

Therefore T has a two-sided inverse and is a bijection.

To complete the proof, we must show that T−1 = X is bounded. Denote the partial sums as
Sn =

∑n
i=0(I − T )i. Then, using continuity of the norm to exchange the limit, we obtain

||T−1x|| = || limSnx|| = lim ||Snx|| ≤ lim

n
∑

i=0

||I − T ||i||x|| =
1

1− γ
||x||.

Therefore, ||T−1|| <∞.

(b) We have

||ST−1 − I|| = ||(ST−1 − I)TT−1|| ≤ ||S − T || · ||T−1|| < 1.
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From part (a), we conclude that ST−1 = A ∈ L(X,X) is invertible. Then S = AT is the product
of two invertible operators. S is thus a bijection with inverse T−1A−1, and is bounded since

||S−1|| ≤ ||T−1|| · ||A−1||.

Problem 5.10
Let L1

k([0, 1]) be the space of all f ∈ Ck−1([0, 1]) such that f (k−1) is absolutely continuous on [0, 1]

(and hence f (k) exists a.e. and is in L1([0, 1]). Then ||f || =
∑k

0

∫ 1

0
|f (j)(x)|dx is a norm on L1

k([0, 1])
that makes L1

k([0, 1]) into a Banach space.

Solution:
It is immediate that L1

k([0, 1]) is a normed vector space. The hard part is to show that L1
k([0, 1])

is complete.
First, we deal with the case k = 1. Let

∑∞
1 fn be an absolutely convergent series in L1

1([0, 1]).
Written explicitely, this means that

∞
∑

n=1

||fn||
1
1 =

∞
∑

n=1

(
∫ 1

0

|fn(x)|dx+

∫ 1

0

|f ′
n(x)|dx

)

<∞.

Therefore,
∑∞

1

∫

|fn| <∞, and by Theorem 2.25,
∑∞

1 fn converges a.e. to a function in L1([0, 1]).
By the fundamental theorem of calculus, for some a ∈ [0, 1] we have

∞
∑

n=1

|fn(x)| =
∞
∑

n=1

∣

∣

∣

∣

∫ x

a

f ′
n(t)dt+ fn(a)

∣

∣

∣

∣

≤
∞
∑

n=1

∫ x

a

|f ′
n(t)dt|+ |fn(a)| <∞.

By completeness of the norm |.|, we see that
∑∞

1 fn(x) converges with respect to |.| for each
x ∈ [0, 1].

Now, we also have that
∑∞

1

∫

|f ′
n| < ∞, so again by Theorem 2.25,

∑∞
1 f ′

n converges a.e. to a
function g ∈ L1([0, 1]). By invoking Theorem 2.25 again and the fundamental theorem of calculus,
we see that for all x ∈ [0, 1],

∫ x

0

g(t)dt =

∫ x

0

( ∞
∑

n=1

f ′
n(t)

)

dt

=

∞
∑

n=1

∫ x

0

f ′
n(t)dt

=

∞
∑

n=1

fn(x)− fn(0)

= f(x)− f(0).

Therefore, f is absolutely continuous on [0, 1], and furthermore g(t) = f ′(t) a.e. We can now see
that

∑∞
1 fn is a convergent series in L1

1([0, 1]):

2



||f −
N
∑

n=1

fn||
1
1 =

∫ 1

0

|f −
N
∑

n=1

fn|+

∫ 1

0

|f ′ −
N
∑

n=1

f ′
n|

≤

∫ 1

0

∞
∑

n=N

|fn|+

∫ 1

0

∞
∑

n=N

|f ′
n|

=

∞
∑

n=N

(
∫ 1

0

|fn|+

∫ 1

0

|f ′
n|

)

,

which goes to zero as n→ ∞. By Theorem 5.1, L1
1([0, 1]) is complete.

We proceed by induction on k. The arguments are similar to the ones above, so they will not be
repeated in detail. Let

∑∞
1 fn be an absolutely convergent series in L1

k+1([0, 1]). Then
∑∞

1 fn is an
absolutely convergent series in L1

k([0, 1]), and by induction hypothesis,
∑∞

1 fn converges to a function

f with respect to L1
k([0, 1]). Furthermore,

∑∞
1 f

(k)
n converges a.e. to f (k) with respect to |.|. By the

fundamental theorem of calculus, for some a ∈ [0, 1] we have

∞
∑

n=1

|f (k)
n (x)| =

∞
∑

n=1

∣

∣

∣

∣

∫ x

a

f (k+1)
n (t)dt+ f (k)

n (a)

∣

∣

∣

∣

≤
∞
∑

n=1

∫ x

a

|f (k+1)
n (t)dt|+ |f (k)

n (a)| <∞.

By completeness of the norm |.|, we see that
∑∞

1 f
(k)
n (x) converges with respect to |.| for each

x ∈ [0, 1]. We can now repeat the same argument as done before to show that f (k) is absolutely

continuous and
∑∞

1 f
(k+1)
n converges almost everywhere to f (k+1). Then

||f −
N
∑

n=1

fn||
1
k+1 = ||f −

N
∑

n=1

fn||
1
k +

∫ 1

0

|f (k+1) −
N
∑

n=1

f (k+1)
n |

≤ ||f −
N
∑

n=1

fn||
1
k +

∞
∑

n=N

∫ 1

0

|f (k+1)
n |,

which goes to zero as N → ∞, showing completeness of L1
k+1([0, 1]).

Problem 5.11
If 0 < α ≤ 1, let Λα([0, 1]) be the space of Holder continuous functions of exponent α on [0, 1]. That
is, f ∈ Λα([0, 1]) iff ||f ||Λα

<∞, where

||f ||Λα
= |f(0)|+ sup

x,y∈[0,1],x 6=y

|f(x)− f(y)|

|x− y|α
.

a. || · ||Λα
is a norm that makes Λα([0, 1]) into a Banach space.

b. Let λα([0, 1]) be the set of all f ∈ Λα([0, 1]) such that

|f(x)− f(y)|

|x− y|α
→ 0 as x→ y, for all y ∈ [0, 1].
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If α < 1, λα([0, 1]) is an infinite-dimensional closed subspace of Λα([0, 1]). If α = 1, λα([0, 1]) contains
only constant functions.

Solution:
a. We first show the triangle inequality. Let f, g ∈ Λα([0, 1]).

||f + g||Λα
= |f(0) + g(0)|+ sup

x,y∈[0,1],x 6=y

|f(x) + g(x)− f(y)− g(y)|

|x− y|α

≤ |f(0)|+ |g(0)|+ sup
x,y∈[0,1],x 6=y

(

|f(x)− f(y)|

|x− y|α
+

|g(x)− g(y)|

|x− y|α

)

≤ ||f ||Λα
+ ||g||Λα

.

Scalar multiplication is shown similarly. If ||f ||Λα
= 0, then |f(0)| = 0 and |f(x)|/|x|α = 0 for all

x 6= 0. Hence f = 0.

We now show completeness using Theorem 5.1. Let {fn} be a sequence in Λα([0, 1]) such that
∑∞

1 ||fn||Λα
<∞. Then for any x ∈ (0, 1], we have

∞
∑

n=1

|f(x)| ≤
∞
∑

n=1

|f(0)|+ |f(x)− f(0)|

≤
∞
∑

n=1

|f(0)|+
|f(x)− f(0)|

|x|α

≤
∞
∑

n=1

||f ||Λα
<∞.

When x = 0, we have
∑∞

n=1 |f(0)| ≤
∑∞

n=1 ||f ||Λα
<∞.

Therefore,
∑

fn(x) converges absolutely with respect to | · | for all x ∈ [0, 1]. Define

f(x) :=
∞
∑

n=1

fn(x).

We show f ∈ Λα([0, 1]). Let x, y ∈ [0, 1], x 6= y. Then

|f(x)− f(y)|

|x− y|α
=

|
∑∞

n=1 fn(x)− fn(y)|

|x− y|α

≤
∞
∑

n=1

|fn(x)− fn(y)|

|x− y|α

≤
∞
∑

n=1

||fn||Λα
<∞.
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This shows that

sup
x,y∈[0,1],x 6=y

|f(x)− f(y)|

|x− y|α
<∞.

Since |f(0)| < ∞, we see that ||f ||Λα
< ∞. To complete the proof, we show

∑

fn → f with
respect to || · ||Λα

:

||
N
∑

n=1

fn − f ||Λα
= ||

∞
∑

n=N

fn||Λα
≤

∞
∑

n=N

||fn||Λα
→ 0,

as N → ∞.

b. Let α < 1. First, we show λα([0, 1]) is a subspace of Λα([0, 1]). If f, g ∈ λα([0, 1]), c ∈ R,
then for all y ∈ [0, 1]:

|f(x) + cg(x)− f(y)− cg(y)

|x− y|α
≤

|f(x)− f(y)|

|x− y|α
+ |c|

|g(x)− g(y)|

|x− y|α
→ 0,

as x → y since |f(x)−f(y)|
|x−y|α

→ 0 and |g(x)−g(y)|
|x−y|α

→ 0 by assumption. Therefore λα([0, 1]) is a subspace of

Λα([0, 1]).

We now show that λα([0, 1]) is closed. Suppose {fn} ∈ λα([0, 1]) and fn → f with respect to
|| · ||Λα

. Then there exists N ∈ N such that ||fN − f ||Λα
< ǫ/2. Let y ∈ [0, 1]. Also, there exists δ > 0

such that when |x− y| < δ, we have

|fN(x)− fN(y)|

|x− y|α
< ǫ/2.

Hence, when |x− y| < δ, we get

|f(x)− f(y)|

|x− y|α
≤

|f(x)− fN (x)− (f(y)− fN(y))|

|x− y|α
+

|fN(x)− fN (y)|

|x− y|α

≤ ||fN − f ||Λα
+

|fN(x)− fN(y)|

|x− y|α

< ǫ/2 + ǫ/2 = ǫ.

Therefore, |f(x)−f(y)|
|x−y|α

→ 0 as x→ y for all y ∈ [0, 1]. Hence f ∈ λα([0, 1]) and λα([0, 1]) is closed.

We now show that λα([0, 1]) is infinite dimensional. Consider fn : [0, 1] → R, fn(x) = xn for
n ∈ N. Clearly the fn are independent, so to complete the proof of infinite dimensionality we need to
show that fn ∈ λα([0, 1]) for all n ∈ N. Indeed,

|xn − yn|

|x− y|α
=

|(x− y)
(
∑n−1

k=0 x
kyn−k−1

)

|

|x− y|α
= |x− y|1−α

∣

∣

∣

∣

∣

n−1
∑

k=0

xkyn−k−1

∣

∣

∣

∣

∣

→ 0,
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as x→ y for all y ∈ [0, 1].

If α = 1, we have f ∈ Λα([0, 1]) if and only if for all y ∈ [0, 1], limx→y
|f(x)−f(y)|

|x−y|
= 0, which

happens if and only if f ′(x) = 0 for all x ∈ [0, 1], which happens if and only if f is constant.

Problem 5.19
Let X be an infinite-dimensional normed vector space.

a. There is a sequence {xj} in X such that ||xj|| = 1 for all j and ||xj − xk|| ≥ 1/2 for j 6= k.
(Construct xj inductively, using Exercises 12b and 18.)

b. X is not locally compact.

Solution:
a. Choose any vector x1 ∈ X such that ||x1|| = 1. Then M1 = Cx1 is a closed proper subspace
by Exercise 18. Invoking Exercise 12b with ǫ = 1/2, we can find x2 ∈ X such that ||x2|| = 1 and
inf{||m+ x2|| : m ∈M} ≥ 1/2. In particular, ||x2 − x1|| ≥ 1/2.

We can now proceed inductively. Suppose there are {x1, . . . , xk} vectors such that ||xj|| = 1
for all 1 ≤ j ≤ k and ||xj − xk|| ≥ 1/2 for j 6= k. Then Mk = span{x1, . . . , xk} is a closed
proper subspace of X . From Exercise 12b, there exists a xk+1 ∈ X such that ||xk+1|| = 1 and
inf{||m+ xk+1|| : m ∈ M} ≥ 1/2. In particular, ||xk+1 − xj || ≥ 1/2 for 1 ≤ j ≤ k. The sequence can
therefore be constructed by induction.

b. Suppose X is locally compact. Then there exists a compact set K containing the origin and a
δ > 0 such that U = {x ∈ X : ||x|| < δ} is contained in K. Take the sequence {xj} constructed in
part (a), and consider the rescaled sequence {yj} = {(1/2)δxj}. Then {yj} is a sequence contained
in K, and hence there must be a convergent subsequence. However, ||yi − yk|| ≥ (1/4)δ for all i 6= k,
so no subsequence can be Cauchy. This contradiction completes the proof.

Problem 5.22
Suppose that X and Y are normed vector spaces and T ∈ L(X, Y ).

a. Define T † : Y ∗ → X∗ by T †f = f ◦ T . Then T † ∈ L(Y ∗, X∗) and ||T †|| = ||T ||. T † is called the
adjoint or transpose of T .

b. Applying the construction in (a) twice, one obtains T †† ∈ L(X∗∗, Y ∗∗). If X and Y are identified
with their natural images X̂ and Ŷ in X∗∗ and Y ∗∗, then T ††|X = T .

c. T † is injective iff the range of T is dense in Y .
d. If the range of T † is dense in X∗, then T is injective; the converse is true if X is reflexive.

Solution:
a. We first notice that T †f ∈ X∗ for all f ∈ Y ∗, since T †f = f ◦ T is the product of two bounded
linear operators, and hence is itself a bounded linear operator. Next, we show T † ∈ L(Y ∗, X∗):

T †(cf) = (cf) ◦ T = c(f ◦ T ) = cT †f.

T †(f + g) = (f + g) ◦ T = f ◦ T + g ◦ T = T †f + T †g.
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To see that T † is bounded, take f ∈ L(Y,C), and since T ∈ L(X, Y ), using a property of the
product of two bounded linear operators we obtain

||T †(f)|| = ||f ◦ T || ≤ ||T || ||f ||.

Therefore T † ∈ L(Y ∗, X∗), and since the operator norm of T † is the infimum of all such bounds,
||T †|| ≤ ||T ||.

We now show ||T || ≤ ||T †|| by proving ||Tx|| ≤ ||T †|| ||x|| for all x ∈ X . If Tx = 0, the inequality
holds trivially, so suppose Tx 6= 0. Then by Theorem 5.8, there exists a f ∈ Y ∗ such that ||f || = 1
and (T †f)(x) = f(Tx) = ||Tx||.

||Tx|| = ||(T †f)(x)|| ≤ ||T †f || ||x|| ≤ ||T †|| ||f || ||x|| = ||T †|| ||x||.

This shows that ||T †|| = ||T ||.

b. First, we show that T ††α ∈ Y ∗∗ for all α ∈ X∗∗. Indeed, T ††α = α ◦ T † is the product of
two bounded linear operators, hence T ††α ∈ Y ∗∗.

Next, we show that T †† is a bounded linear operator:

T ††(cα) = (cα) ◦ T † = cT ††(α).

T ††(α + β) = (α + β) ◦ T † = α ◦ T † + β ◦ T † = T ††(α) + T ††(β).

||T ††(α)|| = ||α ◦ T †|| ≤ ||T †|| ||α||.

It will now be shown that T ††|X = T after identifying X, Y with X̂, Ŷ . For any f ∈ Y ∗, we have

(T ††x̂)(f) = x̂ ◦ T †f = x̂ ◦ (f ◦ T ) = f ◦ T (x) = ˆT (x)f.

Hence T ††x̂ = ˆT (x).

c. Suppose that the range of T is not dense. Then there exists a non-empty open set U ⊆ Y
such that U ∩ Range(T ) = ∅. Since Range(T ) is a closed subspace and there exists a y ∈ U , by
Theorem 5.8a, there exists f ∈ Y ∗ such that f(y) 6= 0 and f |Range(T ) = 0. In other words, T †f = 0
but f 6= 0, and hence T † is not injective.

Conversely, suppose that the range of T is dense in Y . If there exists a f ∈ Y ∗ such that
T †f = 0, then f ◦T (x) = 0 for all x ∈ X . Hence f is zero on a dense subset of Y , and by continuity of
f it follows that f is identically zero on Y . (This is known fact from topology, also stated in Exercise
4.16b and proved on the 564 final exam.) Therefore, T † is injective.

d. Suppose the range of T † is dense in X∗. If T (x) = 0 for some x ∈ X , then consider the as-
sociated linear functional x̂ ∈ X∗∗. For any f ∈ Y ∗, we have

x̂(T †f) = x̂(f ◦ T ) = f ◦ T (x) = 0.
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Therefore, x̂ is zero on the range of T †, and hence by continuity, x̂ is identically zero on all of X∗.
Therefore x = 0, and T is injective.

On the other hand, suppose the range of T † is not dense in X∗ and X is reflexive. There ex-
ists a non-empty open set U ⊆ X∗ such that U ∩ range(T†) = ∅. By Theorem 5.8a, there exists a
non-zero α ∈ X∗∗ such that α|range(T†) = 0. Since X is reflexive, there exist a x 6= 0 ∈ X such that
α = x̂.

Suppose that Tx 6= 0. Then by Theorem 5.8b, there exists a f ∈ Y ∗ such that f ◦ Tx = ||Tx||.
This leads to the following contradiction:

0 = x̂(T †f) = x̂(f ◦ T ) = f ◦ T (x) = ||T (x)||.

Therefore, we have found a non-zero x ∈ X such that Tx = 0. Hence T is not injective.

Problem 5.31
Let X, Y be Banach spaces and let S : X → Y be an unbounded linear map (for the existence of which,
see §5.6). Let Γ(S) be the graph of S, a subspace of X × Y .

a. Γ(S) is not complete.
b. Γ(S) Define T : X → Γ(S) by Tx = (x, Sx). Then T is closed but not bounded.
c. T−1 : Γ(S) → X is bounded and surjective but not open.

Solution:
a. Suppose Γ(S) is complete. Since X × Y is a metric space, a subset F is closed if and only if the
limit of every convergent sequence in F belongs to F . Any convergent sequence in Γ(S) is Cauchy,
and hence its limit is in Γ(S) by completeness. Therefore, Γ(S) is closed. By the Closed Graph
Theorem, S is bounded. This is a contradiction, hence Γ(S) is not complete.

b. First, we show T is not bounded. Choose any C > 0. Then there exists an x ∈ X such
that ||Sx|| > C||x|| since S is unbounded. Using the definition of the product norm, we obtain

||Tx|| = max{||x||, ||Sx||} > C||x||.

Hence T is unbounded. Next we show that Γ(T ) ⊆ X × Γ(S) is closed. Suppose a sequence
{(xn, (xn, Sxn))} ∈ Γ(T ) converges to an element (x, (x̃, Sx̃)) ∈ X × Γ(S). Then

||xn − x|| ≤ max{||xn − x||, ||(xn, Sxn)− (x̃, Sx̃)||} = ||(xn, (xn, Sxn))− (x, (x̃, Sx̃))|| → 0

as n→ ∞, and lim xn = x. Similarly,
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||xn − x̃|| ≤ max{||xn − x̃||, ||Sxn − Sx̃)||

= ||(xn − x̃, Sxn − Sx̃)||

= ||(xn, Sxn)− (x̃, Sx̃)||

≤ max{||xn − x||, ||(xn, Sxn)− (x̃, Sx̃)||}

= ||(xn, (xn, Sxn))− (x, (x̃, Sx̃))|| → 0

as n→ ∞, and lim xn = x̃. Therefore, x̃ = x and (x, (x̃, Sx̃)) = (x, (x, Sx)) ∈ Γ(T ). This shows that
T is closed.

c. We have T−1 : Γ(S) → X defined as T−1((x, Sx)) = x. It is clear that T ◦ T−1 = T−1 ◦ T = I and
hence T−1 is surjective. To see that T−1 is bounded, notice

||T−1((x, Sx))|| = ||x|| ≤ max{||x||, ||Sx||} = ||(x, Sx)||,

for all (x, Sx) ∈ Γ(S).
Lastly, if T−1 was open, then T would be continuous. However, as shown previously, T is un-

bounded, hence T−1 is not open.

Problem 5.42
Let En be the set of all f ∈ C([0, 1]) for which there exists x0 ∈ [0, 1] (depending on f) such that
|f(x)− f(x0)| ≤ n|x− x0| for all x ∈ [0, 1].

a. En is nowhere dense in C([0, 1]). (Any real f ∈ C([0, 1]) can be uniformly approximated by
a piecewise linear function g whose linear pieces, finite in number, have slope ±2n. If ||h − g||u is
sufficiently small, then h /∈ En.)

b. The set of nowhere differentiable functions is residual in C([0, 1]).

Solution:
a. First, we show that any real f ∈ C([0, 1]) can be uniformly approximated by a piecewise linear
function ψ.

Let ǫ > 0. Since f is uniformly continuous on [0, 1], there exists a δ > 0 such that |f(x)− f(y)| <
ǫ/2 when |x − y| < δ. Choose N ∈ N such that 1/N < δ. Let xi = i/N , where i is an integer such
that 0 ≤ i ≤ N . Define ψ ∈ C([0, 1]) such that ψ(xi) = f(xi) and ψ is linear on [xi, xi+1].

Now take x ∈ [0, 1], supposing x ∈ [xi, xi+1]. Then

|ψ(x)− f(x)| ≤ |ψ(x)− ψ(xi)|+ |ψ(xi)− f(x)|

≤ |ψ(xi+1)− ψ(xi)|+ |ψ(xi)− f(x)|

= |f(xi+1)− f(xi)|+ |f(xi)− f(x)| < ǫ/2 + ǫ/2 = ǫ.

9



Now, since f can be uniformly approximated by a piecewise linear function ψ, it is easy to see
that we can uniformly approximate ψ by a function g whose linear pieces, finite in number, have slope
of absolute value greater than 2n. Indeed, if one of the linear pieces of ψ has slope of absolute value
less than 2n, approximate it by a see-saw function whose right-hand derivative has absolute value of 2n.

We show that each En is closed. Suppose (fk) is a sequence in En, and fk → f in C([0, 1]). Then
for each fk, there exists a xk ∈ [0, 1] such that |fk(x)− fk(xk)| ≤ n|x− xk|. We obtain a bounded se-
quence (xk) in [0, 1], which must have a convergent subsequence. Denote the limit of this subsequence
as x0. Let ǫ > 0. Choose m ∈ N such that ||f − fm||u < ǫ/2 and |fm(x)− fm(x0)| ≤ n|x− x0|. Then

|f(x)− f(x0)| ≤ |f(x)− fm(x)|+ |fm(x)− fm(x0)|+ |fm(x0)− f(x0)|

≤ 2||f − fm||u + |fm(x)− fm(x0)|

≤ ǫ+ n|x− x0|.

Since this holds for all ǫ > 0, f ∈ En and hence En = En. We now show that En is nowhere dense
in C([0, 1]). If f ∈ En, suppose there exists a ball of radius ǫ > 0 centered at f contained in En. Take
g as above, ie, a piecewise linear function such that ||f − g|| < ǫ whose finitely many linear pieces
have slope of absolute value greater than 2n. Then for any x0 ∈ [0, 1], there exists a y sufficiently
close to x0 such that

|g(y)− g(x0)|

|y − x0|
≥ 2n.

Therefore, g /∈ En. Hence there is no open ball centered at f contained in En = En, so En is
nowhere dense in C([0, 1]).

b. Let A denote the set of functions in C([0, 1]) that are nowhere differentiable. We show that
Ac ⊆ ∪En. If f ∈ C([0, 1]) is differentiable at some x0 ∈ [0, 1], then there exists δ,M > 0 such that if
|x− x0| < δ, then

|f(x0)− f(x)|

|x0 − x|
≤M.

On the other hand, if |x− x0| > δ, we see that

|f(x0)− f(x)|

|x0 − x|
≤

2||f ||u
δ

.

It follows that if n ∈ N is such that n > M and n > 2||f ||u/δ, then f ∈ En. Hence

Ac ⊆
⋃

En,

and thus, Ac is the subset of a meager set and is hence also meager. Therefore, A is the complement
of a meager set. This shows that the set of nowhere differentiable functions in residual in C([0, 1]).
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Problem 5.48
Suppose that X is a Banach space.

a. The norm-closed unit ball B = {x ∈ X : ||x|| ≤ 1} is also weakly closed. (Use Theorem 5.8d.)
b. If E ⊂ X is bounded (with respect to the norm), so is its weak closure.
c. If F ⊂ X∗ is bounded (with respect to the norm), so is its weak∗ closure.
d. Every weak∗-Cauchy sequence in X∗ converges. (Use Exercise 38.)

Solution:
a. Let 〈xα〉 be a net in B that converges weakly to x ∈ X . By Theorem 5.8d, ||x0|| = ||x̂0|| for all
x0 ∈ X . Hence for every xα in the net, we have

x̂α ∈ B∗∗ = {α ∈ X∗∗ : ||α|| ≤ 1}.

Since x̂α(f) = f(xα) → f(x) = x̂(f) for all f ∈ X∗, we see that the net 〈x̂α〉 converges to x̂ in
the weak* topology on (X∗)∗. Since the weak* topology is Hausdorff, any compact set is closed, and
hence by Alaoglu’s Theorem, x̂ ∈ B∗∗. It follows that ||x|| = ||x̂|| ≤ 1, and x ∈ B. Therefore B is
weakly closed.

b. If E ⊆ X is bounded, then there exists a C > 0 such that ||x|| ≤ C for all x ∈ E. Then
||(1/C)x|| ≤ 1 for all x ∈ E. Let 〈xα〉 be a net in E that converges weakly to x ∈ X . By continuity
of scalar multiplication, 〈(1/C)xα〉 converges weakly to (1/C)x, and by part (a), (1/C)x ∈ B. Hence
||x|| ≤ C. Therefore, the weak closure of E is bounded.

c. If F ⊆ X∗ is bounded, then there exists a C > 0 such that ||f || ≤ C for all f ∈ X∗. Let
〈fα〉 be a net in F that converges to f ∈ X∗ in the weak* topology. By continuity of scalar mul-
tiplication, the net 〈(1/C)fα〉 converges to (1/C)f in the weak* topology. Since 〈(1/C)fα〉 is a net
in B∗ = {f ∈ X∗ : ||f || ≤ 1}, by Alaoglu’s Theorem, (1/C)f is also in B∗. Hence ||f || ≤ C, and
therefore the weak* closure of F is bounded.

d. Let (fn) be a Cauchy sequence in X∗ with respect to the weak* topology. Then for all x ∈ X ,
|fn(x)− fm(x)| → 0 as n,m→ ∞. By completeness of C, lim fn(x) exists for all x ∈ X . By Exercise
38, if we define f(x) = lim fn(x), then f ∈ X∗. It is clear that fn → f in the weak* topology.

Problem 5.57
Suppose that H is a Hilbert space and T ∈ L(H,H).

a. There is a unique T ∗ ∈ L(H,H), called the adjoint of T , such that 〈Tx, y〉 = 〈x, T ∗y〉 for all
x, y ∈ H. (Cf. Exercise 22. We have T ∗ = V −1T †V where V is the conjugate-linear isomorphism
from H to H∗ in Theorem 5.25, (V y)(x) = 〈x, y〉.)

b. ||T ∗|| = ||T ||, ||T ∗T || = ||T ||2, (aS + bT )∗ = aS∗ +BT ∗, (ST )∗ = T ∗S∗, and T ∗∗ = T .
c. Let R and N denote range and nullspace; then R(T )⊥ = N (T ∗) and N (T )⊥ = R(T ∗).
d. T is unitary iff T is invertible and T−1 = T ∗.

Solution:
a. Define T ∗ = V −1T †V . Then T ∗ is the composition of bounded linear operators, hence T ∗ is a
bounded linear operator. For all x, y ∈ H, we have
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〈x, T ∗y〉 = (V T ∗y)(x)

= (V V −1T †V y)(x)

= (T †V y)(x)

= ((V y) ◦ T )(x)

= (V y)(Tx)

= 〈Tx, y〉.

To show uniqueness, suppose there exists S ∈ L(H,H) such that 〈Tx, y〉 = 〈x, Sx〉. Then
〈x, T ∗y〉 = 〈x, Sy〉, hence 〈x, (T ∗ − S)y〉 = 0 for all x, y ∈ H. In particular, ||(T ∗ − S)y||2 =
〈(T ∗ − S)y, (T ∗ − S)y〉 = 0 for all y ∈ H, hence T ∗ − S = 0.

b. First, we show T ∗∗ = T . For all x, y ∈ H,

〈T ∗x, y〉 = 〈y, T ∗x〉 = 〈Ty, x〉 = 〈x, Ty〉.

Next, we show ||T ∗|| = ||T ||. We know ||T || = ||T †|| from Exercise 22, and we know ||V || =
||V −1|| = 1 since V is an isometry and an isomorphism. Hence,

||T ∗x|| = ||V −1T †V x|| ≤ ||V −1|| ||T †|| ||V || ||x|| = ||T || ||x||.

Thus we have shown ||T ∗|| ≤ ||T ||. Combining this with the fact that T = T ∗∗, we obtain
||T || = ||(T ∗)∗|| ≤ ||T ∗||.

Next, we show ||T ∗T || = ||T ||2. For any x ∈ H,

||T ∗Tx|| ≤ ||T || ||T ∗|| ||x|| = ||T ||2 ||x||,

so ||T ∗T || ≤ ||T ||2. On the other hand,

||Tx||2 = 〈Tx, Tx〉 = 〈x, T ∗Tx〉 = (V T ∗Tx)(x) ≤ ||V T ∗Tx|| ||x|| ≤ ||T ∗T || ||x||2.

Therefore, ||T || ≤ ||T ∗T ||1/2.

To see (aS + bT )∗ = aS∗ + bT ∗, notice that for all x, y ∈ H,

〈(aS + bT )x, y〉 = a〈Sx, y〉+ b〈Tx, y〉 = a〈x, S∗y〉+ b〈x, T ∗y〉 = 〈x, aS∗y+ bT ∗y〉 = 〈x, (aS∗ + bT ∗)y〉.

To see (ST )∗ = T ∗S∗, notice that for all x, y ∈ H,

〈STx, y〉 = 〈Tx, S∗y〉 = 〈x, T ∗S∗y〉.
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c. Let y ∈ R(T )⊥. Then 〈y, Tx〉 = 0 for all x ∈ H. Therefore 〈T ∗y, x〉 = 0 for all x ∈ H, and
in particular, ||T ∗y||2 = 〈T ∗y, T ∗y〉 = 0. Therefore y ∈ N (T ∗). On the other hand, let x ∈ N (T ∗).
Then 〈T ∗x, y〉 = 0 for all y ∈ H. Hence 〈x, Ty〉 = 0 for all y ∈ H, and x ∈ R(T )⊥. Therefore,
R(T )⊥ = N (T ∗).

Suppose x ∈ N (T )⊥. Then 〈x, v〉 = 0 for all v such that Tv = 0. Let y ∈ R(T ∗)⊥. Then
〈Ty, w〉 = 〈y, T ∗w〉 = 0 for all w ∈ H, hence ||Ty||2 = 〈Ty, Ty〉 = 0. Therefore Ty = 0, so 〈x, y〉 = 0.
It follows that x ∈ (R(T ∗)⊥)⊥. By Exercise 56, (R(T ∗)⊥)⊥ = R(T ∗), hence x ∈ R(T ∗). Therefore
N (T )⊥ ⊆ R(T ∗). On the other hand, let y ∈ R(T ∗). Then there exists a sequence (T ∗xn) that
converges to y. If Tz = 0 for some z ∈ H, then

〈y, z〉 = 〈limT ∗xn, z〉 = lim〈T ∗xn, z〉 = lim〈xn, T z〉 = 0.

Therefore y ∈ N (T )⊥.

d. Suppose T is unitary. Then T is invertible by definition, and for all x, y ∈ H,

〈Tx, y〉 = 〈Tx, TT−1y〉 = 〈x, T−1y〉.

It follows that T−1 = T ∗. On the other hand, if T is invertible and T−1 = T ∗, then for all x, y ∈ H,

〈Tx, Ty〉 = 〈x, T−1Ty〉 = 〈x, y〉.

Problem 5.59
Every closed convex set K in a Hilbert space has a unique element of minimal norm. (If 0 ∈ K, the
result is trivial; otherwise, adapt the proof of Theorem 5.24.)

Solution:
Let δ = inf{||x|| : x ∈ K}, and let {xn} be a sequence in K such that ||xn|| → δ. By the

paralellogram law,

||xn − xm||
2 = 2||xn||

2 + 2||xm||
2 − ||xn + xm||

2.

By convexity, (1/2)(xn + xm) ∈ K. Therefore ||(1/2)(xn + xm)|| ≥ δ, hence

||xn − xm||
2 ≤ 2||xn||

2 + 2||xm||
2 − 4δ2.

As m,n → ∞, this quantity goes to zero, hence {xn} is Cauchy. Let x = lim xn. Then x ∈ K
since K is closed and ||x|| = δ, hence x is an element of minimal norm.

To show x is unique, suppose y ∈ K is also such that ||y|| = δ. Again, using the paralellogram
law and the fact that (1/2)(x+ y) ∈ K,
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||y − x||2 = 2||x||2 + 2||y||2 − ||x+ y||2 ≤ 2δ2 + 2δ2 − 4δ2 = 0.

Hence y = x.

Problem 5.64
Let H be a separable infinite-dimensional Hilbert space with orthonormal basis {un}∞1 .

a. For k ∈ N, define Lk ∈ L(H,H) by Lk(
∑∞

1 anun) =
∑∞

k anun−k. Then Lk → 0 in the strong
operator topology but not in the norm topology.

b. For k ∈ N, define Rk ∈ L(H,H) by Rk(
∑∞

1 anun) =
∑∞

1 anun+k. Then Rk → 0 in the weak
operator topology but not in the strong operator topology.

c. RkLk → 0 in the strong operator topology, but LkRk = I for all k. (Use Exercise 53b.)

Solution:
a. There is some confusion in the statement of the question since u0 is undefined, however it appears
after applying Lk. We proceed assuming u0 = 0. Fix x ∈ H. Then x =

∑

anun for some coefficients
an. Applying Lk to x, we see that

||Lkx||
2 = ||

∞
∑

n=k

anun−k||
2 =

∞
∑

n=k+1

|an|
2 → 0

as k → ∞. Hence Lk → 0 in the strong operator topology.
However, ||Lk|| ≥ 1 for all k. We can consider the vector uk+1, and since ||uk+1|| = 1,

||Lk|| ≥ ||Lkuk+1|| = 1.

Therefore Lk does not converge to zero in the norm topology.

b. Let f ∈ H∗. Then there exists a y =
∑

bnun ∈ H such that f(x) = 〈x, y〉. For any
x =

∑

anun ∈ H, after some manipulations and applying the Cauchy-Bunyakovsky-Schwarz in-
equality, we obtain

∣

∣f(Rk(x))
∣

∣

2
=

∣

∣f
(

∞
∑

i=1

aiui+k

)
∣

∣

2
=

∣

∣〈
∞
∑

i=1

aiui+k,
∞
∑

j=1

bjuj〉
∣

∣

2

=
∣

∣

∞
∑

i=1

∞
∑

j=1

〈aiui+k, bjuj〉
∣

∣

2

=
∣

∣

∞
∑

i=1

〈aiui+k, bi+kui+k〉
∣

∣

2

=
∣

∣

∞
∑

i=1

aibi+k

∣

∣

2

≤
(

∞
∑

i=1

|ai|
2
) (

∞
∑

j=1+k

|bj |
2
)

.

14



Since
∑∞

i=1 |ai|
2 is finite and

∑∞
j=1+k |bj|

2 → 0 as k → ∞, we have f(Rk(x)) → 0 as k → 0, hence
Rk → 0 in the weak operator topology.

On the other hand, ||Rk(u1)|| = ||u1+k|| = 1 for all k. Hence Rk does not converge to zero in
the strong operator topology.

c. Fix x ∈ H. Then x =
∑

anun for some coefficients an. Applying RkLk to x, we see that

||RkLkx||
2 = ||Rk(

∞
∑

n=k

anun−k)||
2 = ||Rk(

∞
∑

i=1

ak+iui)||
2

= ||
∞
∑

i=1

ak+iuk+i||
2

= ||
∞
∑

n=k+1

anun||
2

=

∞
∑

n=k+1

|an|
2.

Hence ||RkLkx||2 → 0 as k → 0. Therefore, RkLK → 0 in the strong operator topology.

On the other hand, if we apply LkRk on x =
∑

anun, we obtain

LkRkx = Lk(
∞
∑

n=1

anun+k)

= Lk(

∞
∑

m=1+k

am−kum)

=

∞
∑

m=1+k

am−kum−k

=
∞
∑

n=1

anun = x.

Hence LkRk = I.
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