Folland: Real Analysis, Chapter 5 Sébastien Picard

Problem 5.7

Let X be a Banach space.

a. If $T \in L(X, X)$ and ||I - T|| < 1 where I is the identity operator, then T is invertible; in fact, the series $\sum_{0}^{\infty} (I - T)^{n}$ converges in L(X, X) to T^{-1} .

b. If $T \in L(X, X)$ is invertible and $||S - T|| < ||T^{-1}||^{-1}$, then S is invertible. Thus the set of invertible operators in open in L(X, X).

Solution:

(a) First, we notice that $\sum_{0}^{\infty} (I-T)^{n}$ converges in L(X,X). Since $\gamma = ||I-T|| < 1$,

$$\sum_{n=0}^{\infty} ||(I-T)^n|| \le \sum_{n=0}^{\infty} ||I-T||^n = \frac{1}{1-\gamma} < \infty.$$

Therefore, $\sum_{0}^{\infty} (I - T)^{n}$ converges absolutely. Since X is complete, so is L(X, X), and therefore $\sum_{0}^{\infty} (I - T)^{n}$ converges in L(X, X). Denote $X = \sum_{0}^{\infty} (I - T)^{n}$.

Next, we show that TX and XT are equal to the identity to conclude that T has a two-sided inverse and is a bijection. First, we derive the following:

$$(I-T)X = \sum_{n=0}^{\infty} (I-T)^{n+1} = \sum_{n=1}^{\infty} (I-T)^n = \sum_{n=0}^{\infty} (I-T)^n - I = X - I.$$

It follows that TX = I. The same calculation yields

$$X(I - T) = \sum_{n=0}^{\infty} (I - T)^{n+1} = X - I.$$

Therefore T has a two-sided inverse and is a bijection.

To complete the proof, we must show that $T^{-1} = X$ is bounded. Denote the partial sums as $S_n = \sum_{i=0}^n (I-T)^i$. Then, using continuity of the norm to exchange the limit, we obtain

$$||T^{-1}x|| = ||\lim S_n x|| = \lim ||S_n x|| \le \lim \sum_{i=0}^n ||I - T||^i||x|| = \frac{1}{1 - \gamma} ||x||.$$

Therefore, $||T^{-1}|| < \infty$.

(b) We have

$$||ST^{-1} - I|| = ||(ST^{-1} - I)TT^{-1}|| \le ||S - T|| \cdot ||T^{-1}|| < 1.$$

From part (a), we conclude that $ST^{-1} = A \in L(X, X)$ is invertible. Then S = AT is the product of two invertible operators. S is thus a bijection with inverse $T^{-1}A^{-1}$, and is bounded since

$$||S^{-1}|| \le ||T^{-1}|| \cdot ||A^{-1}||.$$

Problem 5.10

Let $L_k^1([0,1])$ be the space of all $f \in C^{k-1}([0,1])$ such that $f^{(k-1)}$ is absolutely continuous on [0,1] (and hence $f^{(k)}$ exists a.e. and is in $L^1([0,1])$. Then $||f|| = \sum_0^k \int_0^1 |f^{(j)}(x)| dx$ is a norm on $L_k^1([0,1])$ that makes $L_k^1([0,1])$ into a Banach space.

Solution:

It is immediate that $L_k^1([0,1])$ is a normed vector space. The hard part is to show that $L_k^1([0,1])$ is complete.

First, we deal with the case k = 1. Let $\sum_{1}^{\infty} f_n$ be an absolutely convergent series in $L_1^1([0, 1])$. Written explicitly, this means that

$$\sum_{n=1}^{\infty} ||f_n||_1^1 = \sum_{n=1}^{\infty} \left(\int_0^1 |f_n(x)| dx + \int_0^1 |f_n'(x)| dx \right) < \infty.$$

Therefore, $\sum_{1}^{\infty} \int |f_n| < \infty$, and by Theorem 2.25, $\sum_{1}^{\infty} f_n$ converges a.e. to a function in $L^1([0, 1])$. By the fundamental theorem of calculus, for some $a \in [0, 1]$ we have

$$\sum_{n=1}^{\infty} |f_n(x)| = \sum_{n=1}^{\infty} \left| \int_a^x f'_n(t)dt + f_n(a) \right| \le \sum_{n=1}^{\infty} \int_a^x |f'_n(t)dt| + |f_n(a)| < \infty.$$

By completeness of the norm |.|, we see that $\sum_{1}^{\infty} f_n(x)$ converges with respect to |.| for each $x \in [0, 1]$.

Now, we also have that $\sum_{1}^{\infty} \int |f'_{n}| < \infty$, so again by Theorem 2.25, $\sum_{1}^{\infty} f'_{n}$ converges a.e. to a function $g \in L^{1}([0,1])$. By invoking Theorem 2.25 again and the fundamental theorem of calculus, we see that for all $x \in [0,1]$,

$$\int_0^x g(t)dt = \int_0^x \left(\sum_{n=1}^\infty f'_n(t)\right)dt$$
$$= \sum_{n=1}^\infty \int_0^x f'_n(t)dt$$
$$= \sum_{n=1}^\infty f_n(x) - f_n(0)$$
$$= f(x) - f(0).$$

Therefore, f is absolutely continuous on [0, 1], and furthermore g(t) = f'(t) a.e. We can now see that $\sum_{1}^{\infty} f_n$ is a convergent series in $L_1^1([0, 1])$:

$$\begin{split} ||f - \sum_{n=1}^{N} f_n||_1^1 &= \int_0^1 |f - \sum_{n=1}^{N} f_n| + \int_0^1 |f' - \sum_{n=1}^{N} f'_n| \\ &\leq \int_0^1 \sum_{n=N}^\infty |f_n| + \int_0^1 \sum_{n=N}^\infty |f'_n| \\ &= \sum_{n=N}^\infty \left(\int_0^1 |f_n| + \int_0^1 |f'_n| \right), \end{split}$$

which goes to zero as $n \to \infty$. By Theorem 5.1, $L_1^1([0,1])$ is complete.

We proceed by induction on k. The arguments are similar to the ones above, so they will not be repeated in detail. Let $\sum_{1}^{\infty} f_n$ be an absolutely convergent series in $L_{k+1}^1([0,1])$. Then $\sum_{1}^{\infty} f_n$ is an absolutely convergent series in $L_k^1([0,1])$, and by induction hypothesis, $\sum_{1}^{\infty} f_n$ converges to a function f with respect to $L_k^1([0,1])$. Furthermore, $\sum_{1}^{\infty} f_n^{(k)}$ converges a.e. to $f^{(k)}$ with respect to |.|. By the fundamental theorem of calculus, for some $a \in [0,1]$ we have

$$\sum_{n=1}^{\infty} |f_n^{(k)}(x)| = \sum_{n=1}^{\infty} \left| \int_a^x f_n^{(k+1)}(t) dt + f_n^{(k)}(a) \right| \le \sum_{n=1}^{\infty} \int_a^x |f_n^{(k+1)}(t) dt| + |f_n^{(k)}(a)| < \infty.$$

By completeness of the norm |.|, we see that $\sum_{1}^{\infty} f_n^{(k)}(x)$ converges with respect to |.| for each $x \in [0, 1]$. We can now repeat the same argument as done before to show that $f^{(k)}$ is absolutely continuous and $\sum_{1}^{\infty} f_n^{(k+1)}$ converges almost everywhere to $f^{(k+1)}$. Then

$$\begin{split} ||f - \sum_{n=1}^{N} f_n||_{k+1}^1 &= ||f - \sum_{n=1}^{N} f_n||_{k}^1 + \int_0^1 |f^{(k+1)} - \sum_{n=1}^{N} f_n^{(k+1)}| \\ &\leq ||f - \sum_{n=1}^{N} f_n||_{k}^1 + \sum_{n=N}^\infty \int_0^1 |f_n^{(k+1)}|, \end{split}$$

which goes to zero as $N \to \infty$, showing completeness of $L^1_{k+1}([0,1])$.

Problem 5.11

If $0 < \alpha \leq 1$, let $\Lambda_{\alpha}([0,1])$ be the space of Holder continuous functions of exponent α on [0,1]. That is, $f \in \Lambda_{\alpha}([0,1])$ iff $||f||_{\Lambda_{\alpha}} < \infty$, where

$$||f||_{\Lambda_{\alpha}} = |f(0)| + \sup_{x,y \in [0,1], x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}.$$

a. $|| \cdot ||_{\Lambda_{\alpha}}$ is a norm that makes $\Lambda_{\alpha}([0,1])$ into a Banach space. **b.** Let $\lambda_{\alpha}([0,1])$ be the set of all $f \in \Lambda_{\alpha}([0,1])$ such that

$$\frac{|f(x) - f(y)|}{|x - y|^{\alpha}} \to 0 \text{ as } x \to y, \text{ for all } y \in [0, 1].$$

If $\alpha < 1$, $\lambda_{\alpha}([0,1])$ is an infinite-dimensional closed subspace of $\Lambda_{\alpha}([0,1])$. If $\alpha = 1$, $\lambda_{\alpha}([0,1])$ contains only constant functions.

Solution:

a. We first show the triangle inequality. Let $f, g \in \Lambda_{\alpha}([0, 1])$.

$$\begin{split} ||f+g||_{\Lambda_{\alpha}} &= |f(0)+g(0)| + \sup_{x,y \in [0,1], x \neq y} \frac{|f(x)+g(x)-f(y)-g(y)|}{|x-y|^{\alpha}} \\ &\leq |f(0)| + |g(0)| + \sup_{x,y \in [0,1], x \neq y} \left(\frac{|f(x)-f(y)|}{|x-y|^{\alpha}} + \frac{|g(x)-g(y)|}{|x-y|^{\alpha}}\right) \\ &\leq ||f||_{\Lambda_{\alpha}} + ||g||_{\Lambda_{\alpha}}. \end{split}$$

Scalar multiplication is shown similarly. If $||f||_{\Lambda_{\alpha}} = 0$, then |f(0)| = 0 and $|f(x)|/|x|^{\alpha} = 0$ for all $x \neq 0$. Hence f = 0.

We now show completeness using Theorem 5.1. Let $\{f_n\}$ be a sequence in $\Lambda_{\alpha}([0,1])$ such that $\sum_{1}^{\infty} ||f_n||_{\Lambda_{\alpha}} < \infty$. Then for any $x \in (0,1]$, we have

$$\sum_{n=1}^{\infty} |f(x)| \le \sum_{n=1}^{\infty} |f(0)| + |f(x) - f(0)|$$
$$\le \sum_{n=1}^{\infty} |f(0)| + \frac{|f(x) - f(0)|}{|x|^{\alpha}}$$
$$\le \sum_{n=1}^{\infty} ||f||_{\Lambda_{\alpha}} < \infty.$$

When x = 0, we have $\sum_{n=1}^{\infty} |f(0)| \le \sum_{n=1}^{\infty} ||f||_{\Lambda_{\alpha}} < \infty$.

Therefore, $\sum f_n(x)$ converges absolutely with respect to $|\cdot|$ for all $x \in [0, 1]$. Define

$$f(x) := \sum_{n=1}^{\infty} f_n(x).$$

We show $f \in \Lambda_{\alpha}([0,1])$. Let $x, y \in [0,1], x \neq y$. Then

$$\frac{|f(x) - f(y)|}{|x - y|^{\alpha}} = \frac{\left|\sum_{n=1}^{\infty} f_n(x) - f_n(y)\right|}{|x - y|^{\alpha}}$$
$$\leq \sum_{n=1}^{\infty} \frac{|f_n(x) - f_n(y)|}{|x - y|^{\alpha}}$$
$$\leq \sum_{n=1}^{\infty} ||f_n||_{\Lambda_{\alpha}} < \infty.$$

This shows that

$$\sup_{x,y\in[0,1],x\neq y}\frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<\infty.$$

Since $|f(0)| < \infty$, we see that $||f||_{\Lambda_{\alpha}} < \infty$. To complete the proof, we show $\sum f_n \to f$ with respect to $||\cdot||_{\Lambda_{\alpha}}$:

$$||\sum_{n=1}^{N} f_n - f||_{\Lambda_{\alpha}} = ||\sum_{n=N}^{\infty} f_n||_{\Lambda_{\alpha}} \le \sum_{n=N}^{\infty} ||f_n||_{\Lambda_{\alpha}} \to 0,$$

as $N \to \infty$.

b. Let $\alpha < 1$. First, we show $\lambda_{\alpha}([0,1])$ is a subspace of $\Lambda_{\alpha}([0,1])$. If $f, g \in \lambda_{\alpha}([0,1]), c \in \mathbb{R}$, then for all $y \in [0,1]$:

$$\frac{|f(x) + cg(x) - f(y) - cg(y)|}{|x - y|^{\alpha}} \le \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} + |c|\frac{|g(x) - g(y)|}{|x - y|^{\alpha}} \to 0,$$

as $x \to y$ since $\frac{|f(x)-f(y)|}{|x-y|^{\alpha}} \to 0$ and $\frac{|g(x)-g(y)|}{|x-y|^{\alpha}} \to 0$ by assumption. Therefore $\lambda_{\alpha}([0,1])$ is a subspace of $\Lambda_{\alpha}([0,1])$.

We now show that $\lambda_{\alpha}([0,1])$ is closed. Suppose $\{f_n\} \in \lambda_{\alpha}([0,1])$ and $f_n \to f$ with respect to $|| \cdot ||_{\Lambda_{\alpha}}$. Then there exists $N \in \mathbb{N}$ such that $||f_N - f||_{\Lambda_{\alpha}} < \epsilon/2$. Let $y \in [0,1]$. Also, there exists $\delta > 0$ such that when $|x - y| < \delta$, we have

$$\frac{|f_N(x) - f_N(y)|}{|x - y|^{\alpha}} < \epsilon/2.$$

Hence, when $|x - y| < \delta$, we get

$$\frac{|f(x) - f(y)|}{|x - y|^{\alpha}} \le \frac{|f(x) - f_N(x) - (f(y) - f_N(y))|}{|x - y|^{\alpha}} + \frac{|f_N(x) - f_N(y)|}{|x - y|^{\alpha}} \le ||f_N - f||_{\Lambda_{\alpha}} + \frac{|f_N(x) - f_N(y)|}{|x - y|^{\alpha}} < \epsilon/2 + \epsilon/2 = \epsilon.$$

Therefore, $\frac{|f(x)-f(y)|}{|x-y|^{\alpha}} \to 0$ as $x \to y$ for all $y \in [0,1]$. Hence $f \in \lambda_{\alpha}([0,1])$ and $\lambda_{\alpha}([0,1])$ is closed.

We now show that $\lambda_{\alpha}([0,1])$ is infinite dimensional. Consider $f_n : [0,1] \to \mathbb{R}$, $f_n(x) = x^n$ for $n \in \mathbb{N}$. Clearly the f_n are independent, so to complete the proof of infinite dimensionality we need to show that $f_n \in \lambda_{\alpha}([0,1])$ for all $n \in \mathbb{N}$. Indeed,

$$\frac{|x^n - y^n|}{|x - y|^{\alpha}} = \frac{|(x - y)\left(\sum_{k=0}^{n-1} x^k y^{n-k-1}\right)|}{|x - y|^{\alpha}} = |x - y|^{1-\alpha} \left|\sum_{k=0}^{n-1} x^k y^{n-k-1}\right| \to 0,$$

as $x \to y$ for all $y \in [0, 1]$.

If $\alpha = 1$, we have $f \in \Lambda_{\alpha}([0,1])$ if and only if for all $y \in [0,1]$, $\lim_{x \to y} \frac{|f(x) - f(y)|}{|x-y|} = 0$, which happens if and only if f'(x) = 0 for all $x \in [0,1]$, which happens if and only if f is constant.

Problem 5.19

Let X be an infinite-dimensional normed vector space.

a. There is a sequence $\{x_j\}$ in X such that $||x_j|| = 1$ for all j and $||x_j - x_k|| \ge 1/2$ for $j \ne k$. (Construct x_j inductively, using Exercises 12b and 18.)

b. X is not locally compact.

Solution:

a. Choose any vector $x_1 \in X$ such that $||x_1|| = 1$. Then $M_1 = \mathbb{C}x_1$ is a closed proper subspace by Exercise 18. Invoking Exercise 12b with $\epsilon = 1/2$, we can find $x_2 \in X$ such that $||x_2|| = 1$ and $\inf\{||m + x_2|| : m \in M\} \ge 1/2$. In particular, $||x_2 - x_1|| \ge 1/2$.

We can now proceed inductively. Suppose there are $\{x_1, \ldots, x_k\}$ vectors such that $||x_j|| = 1$ for all $1 \leq j \leq k$ and $||x_j - x_k|| \geq 1/2$ for $j \neq k$. Then $M_k = \operatorname{span}\{x_1, \ldots, x_k\}$ is a closed proper subspace of X. From Exercise 12b, there exists a $x_{k+1} \in X$ such that $||x_{k+1}|| = 1$ and $\inf\{||m + x_{k+1}|| : m \in M\} \geq 1/2$. In particular, $||x_{k+1} - x_j|| \geq 1/2$ for $1 \leq j \leq k$. The sequence can therefore be constructed by induction.

b. Suppose X is locally compact. Then there exists a compact set K containing the origin and a $\delta > 0$ such that $U = \{x \in X : ||x|| < \delta\}$ is contained in K. Take the sequence $\{x_j\}$ constructed in part (a), and consider the rescaled sequence $\{y_j\} = \{(1/2)\delta x_j\}$. Then $\{y_j\}$ is a sequence contained in K, and hence there must be a convergent subsequence. However, $||y_i - y_k|| \ge (1/4)\delta$ for all $i \neq k$, so no subsequence can be Cauchy. This contradiction completes the proof.

Problem 5.22

Suppose that X and Y are normed vector spaces and $T \in L(X, Y)$.

a. Define $T^{\dagger}: Y^* \to X^*$ by $T^{\dagger}f = f \circ T$. Then $T^{\dagger} \in L(Y^*, X^*)$ and $||T^{\dagger}|| = ||T||$. T^{\dagger} is called the adjoint or transpose of T.

b. Applying the construction in (a) twice, one obtains $T^{\dagger\dagger} \in L(X^{**}, Y^{**})$. If X and Y are identified with their natural images \hat{X} and \hat{Y} in X^{**} and Y^{**} , then $T^{\dagger\dagger}|X = T$.

c. T^{\dagger} is injective iff the range of T is dense in Y.

d. If the range of T^{\dagger} is dense in X^* , then T is injective; the converse is true if X is reflexive.

Solution:

a. We first notice that $T^{\dagger}f \in X^*$ for all $f \in Y^*$, since $T^{\dagger}f = f \circ T$ is the product of two bounded linear operators, and hence is itself a bounded linear operator. Next, we show $T^{\dagger} \in L(Y^*, X^*)$:

$$T^{\dagger}(cf) = (cf) \circ T = c(f \circ T) = cT^{\dagger}f.$$
$$T^{\dagger}(f+g) = (f+g) \circ T = f \circ T + g \circ T = T^{\dagger}f + T^{\dagger}g.$$

To see that T^{\dagger} is bounded, take $f \in L(Y, \mathbb{C})$, and since $T \in L(X, Y)$, using a property of the product of two bounded linear operators we obtain

$$||T^{\dagger}(f)|| = ||f \circ T|| \le ||T|| ||f||.$$

Therefore $T^{\dagger} \in L(Y^*, X^*)$, and since the operator norm of T^{\dagger} is the infimum of all such bounds, $||T^{\dagger}|| \leq ||T||$.

We now show $||T|| \leq ||T^{\dagger}||$ by proving $||Tx|| \leq ||T^{\dagger}|| ||x||$ for all $x \in X$. If Tx = 0, the inequality holds trivially, so suppose $Tx \neq 0$. Then by Theorem 5.8, there exists a $f \in Y^*$ such that ||f|| = 1 and $(T^{\dagger}f)(x) = f(Tx) = ||Tx||$.

$$||Tx|| = ||(T^{\dagger}f)(x)|| \le ||T^{\dagger}f|| \ ||x|| \le ||T^{\dagger}|| \ ||f|| \ ||x|| = ||T^{\dagger}|| \ ||x||.$$

This shows that $||T^{\dagger}|| = ||T||$.

b. First, we show that $T^{\dagger\dagger}\alpha \in Y^{**}$ for all $\alpha \in X^{**}$. Indeed, $T^{\dagger\dagger}\alpha = \alpha \circ T^{\dagger}$ is the product of two bounded linear operators, hence $T^{\dagger\dagger}\alpha \in Y^{**}$.

Next, we show that $T^{\dagger\dagger}$ is a bounded linear operator:

$$T^{\dagger\dagger}(c\alpha) = (c\alpha) \circ T^{\dagger} = cT^{\dagger\dagger}(\alpha).$$
$$T^{\dagger\dagger}(\alpha + \beta) = (\alpha + \beta) \circ T^{\dagger} = \alpha \circ T^{\dagger} + \beta \circ T^{\dagger} = T^{\dagger\dagger}(\alpha) + T^{\dagger\dagger}(\beta).$$
$$||T^{\dagger\dagger}(\alpha)|| = ||\alpha \circ T^{\dagger}|| \le ||T^{\dagger}|| \ ||\alpha||.$$

It will now be shown that $T^{\dagger\dagger}|X = T$ after identifying X, Y with \hat{X}, \hat{Y} . For any $f \in Y^*$, we have

$$(T^{\dagger\dagger}\hat{x})(f) = \hat{x} \circ T^{\dagger}f = \hat{x} \circ (f \circ T) = f \circ T(x) = T(x)f.$$

Hence $T^{\dagger\dagger}\hat{x} = T(\hat{x})$.

c. Suppose that the range of T is not dense. Then there exists a non-empty open set $U \subseteq Y$ such that $U \cap \overline{\text{Range}(T)} = \emptyset$. Since $\overline{\text{Range}(T)}$ is a closed subspace and there exists a $y \in U$, by Theorem 5.8a, there exists $f \in Y^*$ such that $f(y) \neq 0$ and $f|\overline{\text{Range}(T)} = 0$. In other words, $T^{\dagger}f = 0$ but $f \neq 0$, and hence T^{\dagger} is not injective.

Conversely, suppose that the range of T is dense in Y. If there exists a $f \in Y^*$ such that $T^{\dagger}f = 0$, then $f \circ T(x) = 0$ for all $x \in X$. Hence f is zero on a dense subset of Y, and by continuity of f it follows that f is identically zero on Y. (This is known fact from topology, also stated in Exercise 4.16b and proved on the 564 final exam.) Therefore, T^{\dagger} is injective.

d. Suppose the range of T^{\dagger} is dense in X^* . If T(x) = 0 for some $x \in X$, then consider the associated linear functional $\hat{x} \in X^{**}$. For any $f \in Y^*$, we have

$$\hat{x}(T^{\dagger}f) = \hat{x}(f \circ T) = f \circ T(x) = 0.$$

Therefore, \hat{x} is zero on the range of T^{\dagger} , and hence by continuity, \hat{x} is identically zero on all of X^* . Therefore x = 0, and T is injective.

On the other hand, suppose the range of T^{\dagger} is not dense in X^* and X is reflexive. There exists a non-empty open set $U \subseteq X^*$ such that $U \cap \overline{\operatorname{range}}(T^{\dagger}) = \emptyset$. By Theorem 5.8a, there exists a non-zero $\alpha \in X^{**}$ such that $\alpha | \overline{\operatorname{range}}(T^{\dagger}) = 0$. Since X is reflexive, there exist a $x \neq 0 \in X$ such that $\alpha = \hat{x}$.

Suppose that $Tx \neq 0$. Then by Theorem 5.8b, there exists a $f \in Y^*$ such that $f \circ Tx = ||Tx||$. This leads to the following contradiction:

$$0 = \hat{x}(T^{\dagger}f) = \hat{x}(f \circ T) = f \circ T(x) = ||T(x)||.$$

Therefore, we have found a non-zero $x \in X$ such that Tx = 0. Hence T is not injective.

Problem 5.31

Let X, Y be Banach spaces and let $S : X \to Y$ be an unbounded linear map (for the existence of which, see §5.6). Let $\Gamma(S)$ be the graph of S, a subspace of $X \times Y$.

- **a.** $\Gamma(S)$ is not complete.
- **b.** $\Gamma(S)$ Define $T: X \to \Gamma(S)$ by Tx = (x, Sx). Then T is closed but not bounded.
- **c.** $T^{-1}: \Gamma(S) \to X$ is bounded and surjective but not open.

Solution:

a. Suppose $\Gamma(S)$ is complete. Since $X \times Y$ is a metric space, a subset F is closed if and only if the limit of every convergent sequence in F belongs to F. Any convergent sequence in $\Gamma(S)$ is Cauchy, and hence its limit is in $\Gamma(S)$ by completeness. Therefore, $\Gamma(S)$ is closed. By the Closed Graph Theorem, S is bounded. This is a contradiction, hence $\Gamma(S)$ is not complete.

b. First, we show T is not bounded. Choose any C > 0. Then there exists an $x \in X$ such that ||Sx|| > C||x|| since S is unbounded. Using the definition of the product norm, we obtain

$$||Tx|| = \max\{||x||, ||Sx||\} > C||x||.$$

Hence T is unbounded. Next we show that $\Gamma(T) \subseteq X \times \Gamma(S)$ is closed. Suppose a sequence $\{(x_n, (x_n, Sx_n))\} \in \Gamma(T)$ converges to an element $(x, (\tilde{x}, S\tilde{x})) \in X \times \Gamma(S)$. Then

$$||x_n - x|| \le \max\{||x_n - x||, ||(x_n, Sx_n) - (\tilde{x}, S\tilde{x})||\} = ||(x_n, (x_n, Sx_n)) - (x, (\tilde{x}, S\tilde{x}))|| \to 0$$

as $n \to \infty$, and $\lim x_n = x$. Similarly,

$$\begin{aligned} ||x_n - \tilde{x}|| &\leq \max\{||x_n - \tilde{x}||, ||Sx_n - S\tilde{x})|| \\ &= ||(x_n - \tilde{x}, Sx_n - S\tilde{x})|| \\ &= ||(x_n, Sx_n) - (\tilde{x}, S\tilde{x})|| \\ &\leq \max\{||x_n - x||, ||(x_n, Sx_n) - (\tilde{x}, S\tilde{x})||\} \\ &= ||(x_n, (x_n, Sx_n)) - (x, (\tilde{x}, S\tilde{x}))|| \to 0 \end{aligned}$$

as $n \to \infty$, and $\lim x_n = \tilde{x}$. Therefore, $\tilde{x} = x$ and $(x, (\tilde{x}, S\tilde{x})) = (x, (x, Sx)) \in \Gamma(T)$. This shows that T is closed.

c. We have $T^{-1}: \Gamma(S) \to X$ defined as $T^{-1}((x, Sx)) = x$. It is clear that $T \circ T^{-1} = T^{-1} \circ T = I$ and hence T^{-1} is surjective. To see that T^{-1} is bounded, notice

$$||T^{-1}((x, Sx))|| = ||x|| \le \max\{||x||, ||Sx||\} = ||(x, Sx)||,$$

for all $(x, Sx) \in \Gamma(S)$.

Lastly, if T^{-1} was open, then T would be continuous. However, as shown previously, T is unbounded, hence T^{-1} is not open.

Problem 5.42

Let E_n be the set of all $f \in C([0,1])$ for which there exists $x_0 \in [0,1]$ (depending on f) such that $|f(x) - f(x_0)| \le n|x - x_0|$ for all $x \in [0,1]$.

a. E_n is nowhere dense in C([0,1]). (Any real $f \in C([0,1])$ can be uniformly approximated by a piecewise linear function g whose linear pieces, finite in number, have slope $\pm 2n$. If $||h - g||_u$ is sufficiently small, then $h \notin E_n$.)

b. The set of nowhere differentiable functions is residual in C([0,1]).

Solution:

a. First, we show that any real $f \in C([0,1])$ can be uniformly approximated by a piecewise linear function ψ .

Let $\epsilon > 0$. Since f is uniformly continuous on [0, 1], there exists a $\delta > 0$ such that $|f(x) - f(y)| < \epsilon/2$ when $|x - y| < \delta$. Choose $N \in \mathbb{N}$ such that $1/N < \delta$. Let $x_i = i/N$, where i is an integer such that $0 \le i \le N$. Define $\psi \in C([0, 1])$ such that $\psi(x_i) = f(x_i)$ and ψ is linear on $[x_i, x_{i+1}]$.

Now take $x \in [0, 1]$, supposing $x \in [x_i, x_{i+1}]$. Then

$$\begin{aligned} |\psi(x) - f(x)| &\leq |\psi(x) - \psi(x_i)| + |\psi(x_i) - f(x)| \\ &\leq |\psi(x_{i+1}) - \psi(x_i)| + |\psi(x_i) - f(x)| \\ &= |f(x_{i+1}) - f(x_i)| + |f(x_i) - f(x)| < \epsilon/2 + \epsilon/2 = \epsilon. \end{aligned}$$

Now, since f can be uniformly approximated by a piecewise linear function ψ , it is easy to see that we can uniformly approximate ψ by a function g whose linear pieces, finite in number, have slope of absolute value greater than 2n. Indeed, if one of the linear pieces of ψ has slope of absolute value less than 2n, approximate it by a see-saw function whose right-hand derivative has absolute value of 2n.

We show that each E_n is closed. Suppose (f_k) is a sequence in E_n , and $f_k \to f$ in C([0,1]). Then for each f_k , there exists a $x_k \in [0,1]$ such that $|f_k(x) - f_k(x_k)| \le n|x - x_k|$. We obtain a bounded sequence (x_k) in [0,1], which must have a convergent subsequence. Denote the limit of this subsequence as x_0 . Let $\epsilon > 0$. Choose $m \in \mathbb{N}$ such that $||f - f_m||_u < \epsilon/2$ and $|f_m(x) - f_m(x_0)| \le n|x - x_0|$. Then

$$\begin{aligned} |f(x) - f(x_0)| &\leq |f(x) - f_m(x)| + |f_m(x) - f_m(x_0)| + |f_m(x_0) - f(x_0)| \\ &\leq 2||f - f_m||_u + |f_m(x) - f_m(x_0)| \\ &\leq \epsilon + n|x - x_0|. \end{aligned}$$

Since this holds for all $\epsilon > 0$, $f \in E_n$ and hence $\overline{E_n} = E_n$. We now show that E_n is nowhere dense in C([0, 1]). If $f \in E_n$, suppose there exists a ball of radius $\epsilon > 0$ centered at f contained in E_n . Take g as above, i.e., a piecewise linear function such that $||f - g|| < \epsilon$ whose finitely many linear pieces have slope of absolute value greater than 2n. Then for any $x_0 \in [0, 1]$, there exists a y sufficiently close to x_0 such that

$$\frac{|g(y) - g(x_0)|}{|y - x_0|} \ge 2n.$$

Therefore, $g \notin E_n$. Hence there is no open ball centered at f contained in $\overline{E_n} = E_n$, so E_n is nowhere dense in C([0, 1]).

b. Let A denote the set of functions in C([0,1]) that are nowhere differentiable. We show that $A^c \subseteq \bigcup E_n$. If $f \in C([0,1])$ is differentiable at some $x_0 \in [0,1]$, then there exists $\delta, M > 0$ such that if $|x - x_0| < \delta$, then

$$\frac{|f(x_0) - f(x)|}{|x_0 - x|} \le M$$

On the other hand, if $|x - x_0| > \delta$, we see that

$$\frac{f(x_0) - f(x)|}{|x_0 - x|} \le \frac{2||f||_u}{\delta}.$$

It follows that if $n \in \mathbb{N}$ is such that n > M and $n > 2||f||_u/\delta$, then $f \in E_n$. Hence

$$A^c \subseteq \bigcup E_n$$

and thus, A^c is the subset of a meager set and is hence also meager. Therefore, A is the complement of a meager set. This shows that the set of nowhere differentiable functions in residual in C([0, 1]).

Problem 5.48

Suppose that X is a Banach space.

a. The norm-closed unit ball $B = \{x \in X : ||x|| \le 1\}$ is also weakly closed. (Use Theorem 5.8d.) **b.** If $E \subset X$ is bounded (with respect to the norm), so is its weak closure.

- **c.** If $F \subset X^*$ is bounded (with respect to the norm), so is its weak^{*} closure.
- **d.** Every weak*-Cauchy sequence in X^* converges. (Use Exercise 38.)

Solution:

a. Let $\langle x_{\alpha} \rangle$ be a net in *B* that converges weakly to $x \in X$. By Theorem 5.8d, $||x_0|| = ||\hat{x}_0||$ for all $x_0 \in X$. Hence for every x_{α} in the net, we have

$$\hat{x}_{\alpha} \in B^{**} = \{ \alpha \in X^{**} : ||\alpha|| \le 1 \}.$$

Since $\hat{x}_{\alpha}(f) = f(x_{\alpha}) \to f(x) = \hat{x}(f)$ for all $f \in X^*$, we see that the net $\langle \hat{x}_{\alpha} \rangle$ converges to \hat{x} in the weak* topology on $(X^*)^*$. Since the weak* topology is Hausdorff, any compact set is closed, and hence by Alaoglu's Theorem, $\hat{x} \in B^{**}$. It follows that $||x|| = ||\hat{x}|| \leq 1$, and $x \in B$. Therefore B is weakly closed.

b. If $E \subseteq X$ is bounded, then there exists a C > 0 such that $||x|| \leq C$ for all $x \in E$. Then $||(1/C)x|| \leq 1$ for all $x \in E$. Let $\langle x_{\alpha} \rangle$ be a net in E that converges weakly to $x \in X$. By continuity of scalar multiplication, $\langle (1/C)x_{\alpha} \rangle$ converges weakly to (1/C)x, and by part (a), $(1/C)x \in B$. Hence $||x|| \leq C$. Therefore, the weak closure of E is bounded.

c. If $F \subseteq X^*$ is bounded, then there exists a C > 0 such that $||f|| \leq C$ for all $f \in X^*$. Let $\langle f_{\alpha} \rangle$ be a net in F that converges to $f \in X^*$ in the weak* topology. By continuity of scalar multiplication, the net $\langle (1/C)f_{\alpha} \rangle$ converges to (1/C)f in the weak* topology. Since $\langle (1/C)f_{\alpha} \rangle$ is a net in $B^* = \{f \in X^* : ||f|| \leq 1\}$, by Alaoglu's Theorem, (1/C)f is also in B^* . Hence $||f|| \leq C$, and therefore the weak* closure of F is bounded.

d. Let (f_n) be a Cauchy sequence in X^* with respect to the weak* topology. Then for all $x \in X$, $|f_n(x) - f_m(x)| \to 0$ as $n, m \to \infty$. By completeness of \mathbb{C} , $\lim f_n(x)$ exists for all $x \in X$. By Exercise 38, if we define $f(x) = \lim f_n(x)$, then $f \in X^*$. It is clear that $f_n \to f$ in the weak* topology.

Problem 5.57

Suppose that \mathcal{H} is a Hilbert space and $T \in L(\mathcal{H}, \mathcal{H})$.

a. There is a unique $T^* \in L(\mathcal{H}, \mathcal{H})$, called the adjoint of T, such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in \mathcal{H}$. (Cf. Exercise 22. We have $T^* = V^{-1}T^{\dagger}V$ where V is the conjugate-linear isomorphism from \mathcal{H} to \mathcal{H}^* in Theorem 5.25, $(Vy)(x) = \langle x, y \rangle$.)

b. $||T^*|| = ||T||$, $||T^*T|| = ||T||^2$, $(aS + bT)^* = \overline{a}S^* + \overline{B}T^*$, $(ST)^* = T^*S^*$, and $T^{**} = T$.

c. Let \mathcal{R} and \mathcal{N} denote range and nullspace; then $\mathcal{R}(T)^{\perp} = \mathcal{N}(T^*)$ and $\mathcal{N}(T)^{\perp} = \overline{\mathcal{R}(T^*)}$.

d. T is unitary iff T is invertible and $T^{-1} = T^*$.

Solution:

a. Define $T^* = V^{-1}T^{\dagger}V$. Then T^* is the composition of bounded linear operators, hence T^* is a bounded linear operator. For all $x, y \in \mathcal{H}$, we have

$$\langle x, T^*y \rangle = (VT^*y)(x) = (VV^{-1}T^{\dagger}Vy)(x) = (T^{\dagger}Vy)(x) = ((Vy) \circ T)(x) = (Vy)(Tx) = \langle Tx, y \rangle.$$

To show uniqueness, suppose there exists $S \in L(\mathcal{H}, \mathcal{H})$ such that $\langle Tx, y \rangle = \langle x, Sx \rangle$. Then $\langle x, T^*y \rangle = \langle x, Sy \rangle$, hence $\langle x, (T^* - S)y \rangle = 0$ for all $x, y \in \mathcal{H}$. In particular, $||(T^* - S)y||^2 = \langle (T^* - S)y, (T^* - S)y \rangle = 0$ for all $y \in \mathcal{H}$, hence $T^* - S = 0$.

b. First, we show $T^{**} = T$. For all $x, y \in \mathcal{H}$,

$$\langle T^*x,y\rangle=\overline{\langle y,T^*x\rangle}=\overline{\langle Ty,x\rangle}=\langle x,Ty\rangle$$

Next, we show $||T^*|| = ||T||$. We know $||T|| = ||T^{\dagger}||$ from Exercise 22, and we know $||V|| = ||V^{-1}|| = 1$ since V is an isometry and an isomorphism. Hence,

$$||T^*x|| = ||V^{-1}T^{\dagger}Vx|| \le ||V^{-1}|| \ ||T^{\dagger}|| \ ||V|| \ ||x|| = ||T|| \ ||x||.$$

Thus we have shown $||T^*|| \leq ||T||$. Combining this with the fact that $T = T^{**}$, we obtain $||T|| = ||(T^*)^*|| \leq ||T^*||$.

Next, we show $||T^*T|| = ||T||^2$. For any $x \in \mathcal{H}$,

$$||T^*Tx|| \le ||T|| \ ||T^*|| \ ||x|| = ||T||^2 \ ||x||,$$

so $||T^*T|| \le ||T||^2$. On the other hand,

$$||Tx||^{2} = \langle Tx, Tx \rangle = \langle x, T^{*}Tx \rangle = (VT^{*}Tx)(x) \leq ||VT^{*}Tx|| \ ||x|| \leq ||T^{*}T|| \ ||x||^{2}.$$

Therefore, $||T|| \le ||T^*T||^{1/2}$.

To see $(aS + bT)^* = \overline{a}S^* + \overline{b}T^*$, notice that for all $x, y \in \mathcal{H}$,

$$\langle (aS+bT)x,y\rangle = a\langle Sx,y\rangle + b\langle Tx,y\rangle = a\langle x,S^*y\rangle + b\langle x,T^*y\rangle = \langle x,\overline{a}S^*y + \overline{b}T^*y\rangle = \langle x,(\overline{a}S^* + \overline{b}T^*)y\rangle.$$

To see $(ST)^* = T^*S^*$, notice that for all $x, y \in \mathcal{H}$,

$$\langle STx, y \rangle = \langle Tx, S^*y \rangle = \langle x, T^*S^*y \rangle$$

c. Let $y \in R(T)^{\perp}$. Then $\langle y, Tx \rangle = 0$ for all $x \in \mathcal{H}$. Therefore $\langle T^*y, x \rangle = 0$ for all $x \in \mathcal{H}$, and in particular, $||T^*y||^2 = \langle T^*y, T^*y \rangle = 0$. Therefore $y \in \mathcal{N}(T^*)$. On the other hand, let $x \in \mathcal{N}(T^*)$. Then $\langle T^*x, y \rangle = 0$ for all $y \in \mathcal{H}$. Hence $\langle x, Ty \rangle = 0$ for all $y \in \mathcal{H}$, and $x \in R(T)^{\perp}$. Therefore, $R(T)^{\perp} = \mathcal{N}(T^*)$.

Suppose $x \in \mathcal{N}(T)^{\perp}$. Then $\langle x, v \rangle = 0$ for all v such that Tv = 0. Let $y \in R(T^*)^{\perp}$. Then $\langle Ty, w \rangle = \langle y, T^*w \rangle = 0$ for all $w \in \mathcal{H}$, hence $||Ty||^2 = \langle Ty, Ty \rangle = 0$. Therefore Ty = 0, so $\langle x, y \rangle = 0$. It follows that $x \in (R(T^*)^{\perp})^{\perp}$. By Exercise 56, $(R(T^*)^{\perp})^{\perp} = \overline{R(T^*)}$, hence $x \in \overline{R(T^*)}$. Therefore $\mathcal{N}(T)^{\perp} \subseteq \overline{R(T^*)}$. On the other hand, let $y \in \overline{R(T^*)}$. Then there exists a sequence (T^*x_n) that converges to y. If Tz = 0 for some $z \in \mathcal{H}$, then

$$\langle y, z \rangle = \langle \lim T^* x_n, z \rangle = \lim \langle T^* x_n, z \rangle = \lim \langle x_n, Tz \rangle = 0.$$

Therefore $y \in \mathcal{N}(T)^{\perp}$.

d. Suppose T is unitary. Then T is invertible by definition, and for all $x, y \in \mathcal{H}$,

$$\langle Tx, y \rangle = \langle Tx, TT^{-1}y \rangle = \langle x, T^{-1}y \rangle$$

It follows that $T^{-1} = T^*$. On the other hand, if T is invertible and $T^{-1} = T^*$, then for all $x, y \in \mathcal{H}$,

$$\langle Tx, Ty \rangle = \langle x, T^{-1}Ty \rangle = \langle x, y \rangle.$$

Problem 5.59

Every closed convex set K in a Hilbert space has a unique element of minimal norm. (If $0 \in K$, the result is trivial; otherwise, adapt the proof of Theorem 5.24.)

Solution:

Let $\delta = \inf\{||x|| : x \in K\}$, and let $\{x_n\}$ be a sequence in K such that $||x_n|| \to \delta$. By the paralellogram law,

$$||x_n - x_m||^2 = 2||x_n||^2 + 2||x_m||^2 - ||x_n + x_m||^2.$$

By convexity, $(1/2)(x_n + x_m) \in K$. Therefore $||(1/2)(x_n + x_m)|| \ge \delta$, hence

$$||x_n - x_m||^2 \le 2||x_n||^2 + 2||x_m||^2 - 4\delta^2.$$

As $m, n \to \infty$, this quantity goes to zero, hence $\{x_n\}$ is Cauchy. Let $x = \lim x_n$. Then $x \in K$ since K is closed and $||x|| = \delta$, hence x is an element of minimal norm.

To show x is unique, suppose $y \in K$ is also such that $||y|| = \delta$. Again, using the paralellogram law and the fact that $(1/2)(x+y) \in K$,

$$||y - x||^{2} = 2||x||^{2} + 2||y||^{2} - ||x + y||^{2} \le 2\delta^{2} + 2\delta^{2} - 4\delta^{2} = 0.$$

Hence y = x.

Problem 5.64

Let \mathcal{H} be a separable infinite-dimensional Hilbert space with orthonormal basis $\{u_n\}_1^\infty$.

a. For $k \in \mathbb{N}$, define $L_k \in L(\mathcal{H}, \mathcal{H})$ by $L_k(\sum_{1}^{\infty} a_n u_n) = \sum_{k}^{\infty} a_n u_{n-k}$. Then $L_k \to 0$ in the strong operator topology but not in the norm topology.

b. For $k \in \mathbb{N}$, define $R_k \in L(\mathcal{H}, \mathcal{H})$ by $R_k(\sum_{1}^{\infty} a_n u_n) = \sum_{1}^{\infty} a_n u_{n+k}$. Then $R_k \to 0$ in the weak operator topology but not in the strong operator topology.

c. $R_k L_k \to 0$ in the strong operator topology, but $L_k R_k = I$ for all k. (Use Exercise 53b.)

Solution:

a. There is some confusion in the statement of the question since u_0 is undefined, however it appears after applying L_k . We proceed assuming $u_0 = 0$. Fix $x \in \mathcal{H}$. Then $x = \sum a_n u_n$ for some coefficients a_n . Applying L_k to x, we see that

$$||L_k x||^2 = ||\sum_{n=k}^{\infty} a_n u_{n-k}||^2 = \sum_{n=k+1}^{\infty} |a_n|^2 \to 0$$

as $k \to \infty$. Hence $L_k \to 0$ in the strong operator topology.

However, $||L_k|| \ge 1$ for all k. We can consider the vector u_{k+1} , and since $||u_{k+1}|| = 1$,

$$||L_k|| \ge ||L_k u_{k+1}|| = 1.$$

Therefore L_k does not converge to zero in the norm topology.

b. Let $f \in \mathcal{H}^*$. Then there exists a $y = \sum b_n u_n \in \mathcal{H}$ such that $f(x) = \langle x, y \rangle$. For any $x = \sum a_n u_n \in \mathcal{H}$, after some manipulations and applying the Cauchy-Bunyakovsky-Schwarz inequality, we obtain

$$|f(R_k(x))|^2 = |f(\sum_{i=1}^{\infty} a_i u_{i+k})|^2 = |\langle \sum_{i=1}^{\infty} a_i u_{i+k}, \sum_{j=1}^{\infty} b_j u_j \rangle|^2$$
$$= |\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \langle a_i u_{i+k}, b_j u_j \rangle|^2$$
$$= |\sum_{i=1}^{\infty} \langle a_i u_{i+k}, b_{i+k} u_{i+k} \rangle|^2$$
$$= |\sum_{i=1}^{\infty} a_i b_{i+k}|^2$$
$$\leq (\sum_{i=1}^{\infty} |a_i|^2) (\sum_{j=1+k}^{\infty} |b_j|^2).$$

Since $\sum_{i=1}^{\infty} |a_i|^2$ is finite and $\sum_{j=1+k}^{\infty} |b_j|^2 \to 0$ as $k \to \infty$, we have $f(R_k(x)) \to 0$ as $k \to 0$, hence $R_k \to 0$ in the weak operator topology.

On the other hand, $||R_k(u_1)|| = ||u_{1+k}|| = 1$ for all k. Hence R_k does not converge to zero in the strong operator topology.

c. Fix $x \in \mathcal{H}$. Then $x = \sum a_n u_n$ for some coefficients a_n . Applying $R_k L_k$ to x, we see that

$$||R_k L_k x||^2 = ||R_k (\sum_{n=k}^{\infty} a_n u_{n-k})||^2 = ||R_k (\sum_{i=1}^{\infty} a_{k+i} u_i)||^2$$
$$= ||\sum_{i=1}^{\infty} a_{k+i} u_{k+i}||^2$$
$$= ||\sum_{n=k+1}^{\infty} a_n u_n||^2$$
$$= \sum_{n=k+1}^{\infty} |a_n|^2.$$

Hence $||R_kL_kx||^2 \to 0$ as $k \to 0$. Therefore, $R_kL_K \to 0$ in the strong operator topology.

On the other hand, if we apply $L_k R_k$ on $x = \sum a_n u_n$, we obtain

$$L_k R_k x = L_k \left(\sum_{n=1}^{\infty} a_n u_{n+k}\right)$$
$$= L_k \left(\sum_{m=1+k}^{\infty} a_{m-k} u_m\right)$$
$$= \sum_{m=1+k}^{\infty} a_{m-k} u_{m-k}$$
$$= \sum_{n=1}^{\infty} a_n u_n = x.$$

Hence $L_k R_k = I$.