
Folland: Real Analysis, Chapter 7
Sébastien Picard

Problem 7.2
Let µ be a Radon measure on X.

a. Let N be the union of all open U ⊂ X such that µ(U) = 0. Then N is open and µ(N) = 0.
The complement of N is called the support of µ.

b. x ∈ supp(µ) iff
∫

fdµ > 0 for every f ∈ Cc(X, [0, 1]) such that f(x) > 0.

Solution:
(a) Since N is the union of open sets, we know that N is open. Therefore, by inner regularity we
have

µ(N) = sup{µ(K) : K ⊂ N, K compact}.

For any K ⊂ N such that K is compact, we see that K is covered by finitely many sets Ui ⊂ X ,
i = 1, . . . , n, such that µ(Ui) = 0. Therefore

µ(K) ≤
n
∑

i=1

µ(Ui) = 0.

Since the measure of N is the supremum over all such µ(K), we have µ(N) = 0.

(b) Suppose x ∈ supp(µ). Take f ∈ Cc(X, [0, 1]) such that f(x) = c > 0. Now, V = f−1((c/2, 1)) is
an open set by continuity. Since x ∈ V , we have µ(V ) > 0. Hence

∫

fdµ ≥

∫

V

fdµ ≥
c

2
µ(V ) > 0.

On the other hand, let x ∈ X and suppose
∫

fdµ > 0 for every f ∈ Cc(X, [0, 1]) such that
f(x) > 0. Since singletons are compact, {x} is compact. Take any open set U such that x ∈ U . By
Urysohn’s lemma, there exists a function g ∈ Cc(X, [0, 1]) such that g(x) = 1 and supp(g) ⊆ U . Then
by formula (7.3) in the statement of the Riesz Representation theorem,

µ(U) = sup{

∫

fdµ : f ∈ Cc(X), f ≺ U} ≥

∫

gdµ > 0.

Problem 7.4
Let X be a LCH space.

a. If f ∈ Cc(X, [0,∞)), then f−1([a,∞)) is a compact Gδ set for all a > 0.
b. If K ⊂ X is a compact Gδ set, there exists f ∈ Cc(X, [0, 1]) such that K = f−1({1}).
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c. The σ−algebra B0
X of Baire sets is the σ−algebra generated by the compact Gδ sets.

Solution:
(a) Since f is continuous, f−1(a− 1/n,∞) is open for all positive integers n. By the equality

f−1 ([a,∞)) =

∞
⋂

n=1

f−1(a−
1

n
,∞),

we see that f−1([a,∞)) is a Gδ set.

To show compactness, we first notice that by continuity f−1([a,∞)) is closed. Since a > 0,
we have f−1([a,∞)) ⊆ suppf . Since the support of f is compact, and closed subsets of compact sets
are compact, we see that f−1([a,∞)) is compact.

(b) Write

K =
∞
⋂

i=1

Ui,

where Ui are open sets. By Proposition 4.31, there exists a precompact open W such that K ⊂ W ⊂
U1. Define the open sets Vn as

Vn =

(

n
⋂

i=1

Ui

)

∩W.

Notice that K = ∩Vn and that V1 ⊃ · · · ⊃ Vi ⊃ Vi+1 ⊃ . . . . From Urysohn’s lemma, for each
positive integer n, there is an fn ∈ Cc(X) such that 0 ≤ fn ≤ 1, supp(f) ⊆ Vn and f = 1 on K.
Define

f =
∞
∑

k=1

1

2k
fk.

The function f(x) is well-defined since the pointwise sum converges absolutely:

∞
∑

k=1

1

2k
|fk(x)| ≤

∞
∑

k=1

1

2k
= 1 < ∞.

Actually, the sum is absolutely convergent in the uniform norm:

∞
∑

k=1

1

2k
||fk||u ≤

∞
∑

k=1

1

2k
= 1.

By Theorem 5.1, since BC(X) is a Banach space, every absolutely convergent sequence in BC(X)
converges, hence f ∈ BC(X). The support of each fn is contained in Vn ⊂ W , and hence suppf ⊂ W .
Since W is precompact, f has compact support. Since 0 ≤ f ≤ 1, we have f ∈ Cc(X, [0, 1]).
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We now show K = f−1({1}). Indeed, if x ∈ K, then fn(x) = 1 for all positive integers n,
hence f(x) =

∑

1
2k

= 1. If x /∈ K, then there exist a positive integer i such that x /∈ Vj for all integers
j ≥ i. Then x /∈ suppfj ⊆ Vj and fj(x) = 0. Therefore

f(x) =
i
∑

k=1

1

2k
fk < 1.

Hence x /∈ f−1({1}).

(c)The σ−algebra B0
X of Baire sets is by definition generated by the sets (Ref)−1([a,∞)), (Imf)−1([a,∞)),

for all a ∈ R and all f ∈ Cc(X). Let A denote the σ−algebra generated by compact Gδ sets.

Let K be a compact Gδ set. Then K = f−1({1}) = f−1([1,∞)) for some f ∈ Cc(X, [0, 1])
by part (b). Then K ∈ B0

X , and therefore A ⊂ B0
X by Lemma 1.1.

On the other hand, let f ∈ Cc(X). First, we assume that f is a non-negative real-valued function.
In this case, if a > 0, from part (a) we know that f−1([a,∞)) ∈ A, and f−1([−a,∞) = f−1([0,∞)) =
X ∈ A. Therefore f−1([a,∞)) ∈ A for all a ∈ R.

Next, suppose f ∈ Cc(X) is real-valued. We can decompose f as

f = f χf≥0 − |f | χf<0 := f+ − f−.

Notice that f+, f− are non-negative real-valued functions in Cc(X). If a > 0, we have f−1([a,∞)) =
(f+)−1([a,∞)) ∈ A. Next, notice f−1([0,∞)) = (f−)−1({0}) = ((f−)−1((0,∞]))c, and since

(f−)−1((0,∞]) =

∞
⋃

n=1

(f−)−1([1/n,∞)),

we have f−1([0,∞)) ∈ A. Lastly, we have

f−1([−a,∞)) = (f−)−1([0, a]) =
(

(f−)−1((a,∞))
)c

=

(

∞
⋃

n=1

(f−)−1([a+ 1/n,∞))

)c

.

Therefore, f−1([a,∞)) ∈ A for all a ∈ R.

If f ∈ Cc(X) is complex-valued, we decompose f into its real and imaginary components, which
are both real-valued functions in Cc(X). Then (Ref)−1([a,∞)) ∈ A, and (Imf)−1([a,∞)) ∈ A, for
all a ∈ R. It follows that B0

X ⊂ A by Lemma 1.1.

Problem 7.10
If µ is a Radon measure and f ∈ L1(µ) is real-valued, for every ǫ > 0 there exists an LSC function g
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and USC function h such that h ≤ f ≤ g and
∫

(g − h)dµ < ǫ.

Solution:
First, we decompose f into its positive and real parts:

f = f χf≥0 − |f | χf<0 := f+ − f−.

Since f ∈ L1(µ), the sets {x : f+ > 0} and {x : f− > 0} are σ-finite by Proposition 2.20. Hence
by Proposition 7.14, there exists functions g1, g2 such that g1 is LSC and g1 ≥ f+, g2 is USC and
g2 ≤ f−, and

ǫ

4
+

∫

f+dµ ≥

∫

g1dµ,

−
ǫ

4
+

∫

f−dµ ≤

∫

g2dµ.

We know that −g2 is LSC, so by Proposition 7.11 we have that g := g1 − g2 is LSC. Futhermore,
g ≥ f .

Again by Proposition 7.14, there exists functions h1, h2 such that h1 is USC and h1 ≤ f+, h2

is LSC and h2 ≥ f−, and

−
ǫ

4
+

∫

f+dµ ≤

∫

h1dµ,

ǫ

4
+

∫

f−dµ ≥

∫

h2dµ.

Since −h2 is USC, we have that h := h1 − h2 is USC. Furthermore, f ≥ h. We now compute

∫

(g − h)dµ =

∫

g1dµ−

∫

g2dµ−

∫

h1dµ+

∫

h2dµ

≤

∫

f+dµ+
ǫ

4
−

∫

f−dµ+
ǫ

4
−

∫

f+dµ+
ǫ

4
+

∫

f−dµ+
ǫ

4

= ǫ.

Problem 7.11
Suppose that µ is a Radon measure on X such that µ({x}) = 0 for all x ∈ X, and A ∈ BX satisfies
0 < µ(A) < ∞. Then for any α such that 0 < α < µ(A) there is a Borel set B ⊂ A such that
µ(B) = α.

Solution:
We define

4



P = {B ⊆ A : B = U ∩A, U open, and µ(B) ≤ α}.

First, we show that P contains an element that is not the empty set. Since A is non-empty, there
exists an element x ∈ A, and

0 = µ({x}) = inf{µ(V ) : {x} ⊆ V, V open}.

Therefore, there exists an open set V containing x such that µ(V ) < α. Hence ∅ 6= V ∩A ∈ P.

We can partially order P by inclusion. Let C be a totally ordered non-empty subset of P. We
show that C has an upper bound in P. Indeed, take

U =
⋃

Bγ∈C

Bγ.

It is clear that U is an upper bound of C. Since the union of open sets is open, we have that U ∩A
is open in A. Since µ(U) ≤ µ(A) < ∞, we see that U is a σ-finite set, and hence by Proposition 7.5
we have

µ(U) = sup{µ(K) : K ⊆ U,K compact}.

For any K compact such that K ⊆ U , we see that K is covered by finitely many Bγ ∈ C. Since C
is totally ordered by inclusion, K ⊆ Bγ for some Bγ ∈ C. Hence

µ(K) ≤ µ(Bγ) ≤ α.

By taking the supremum over all such K, we see that µ(U) ≤ α. Hence U ∈ P. By Zorn’s lemma,
the set P contains a maximal element B.

We claim that µ(B) = α. By contradiction, assume that α − µ(B) > 0. Take x ∈ A\B, which
exists since the measure of A\B is positive. By outer regularity, there exists an open set V such that
x ∈ A ∩ V and

µ(V ) < α− µ(B).

But then B ∪ (A ∩ V ) is open in A and

µ(B ∪ (A ∩ V )) ≤ µ(B) + α− µ(B) ≤ α.

Hence B ( B ∪ (A ∩ V ) and B ∪ (A ∩ V ) ∈ P, contradicting the maximality of B.
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Problem 7.20
Some examples of nonreflexivity of C0(X):

a. If µ ∈ M(X), let Φ(µ) =
∑

x∈X µ({x}). This sum is well defined, and Φ ∈ M(X)∗. If there
exists a nonzero µ ∈ M(X) such that µ({x}) = 0 for all x ∈ X, then Φ is not in the image of C0(X)
in M(X)∗ ∼= C0(X)∗∗.

b. At the other extreme, let X = N with the discrete topology; then C0(X)∗ ∼= l1 and (l1)∗ ∼= l∞.
(Note: C0(N) is usually denoted by c0.)

Solution:
(a) First, we show that the sum is well defined. Let

An = {x ∈ X : µ({x}) ≥ 1/n}.

If card(An) is infinite, then letting A∗
n be a countably infinite subset of An we see that

µ(X) ≥
∑

x∈A∗

n

µ({x}) ≥ (1/n) + (1/n) + (1/n) + · · · = ∞.

Hence card(An) is finite for all positive integers n. Now define

Aµ = {x ∈ X : µ({x}) > 0}.

Since Aµ = ∪An, we see that Aµ is a countable set. Hence by countable additivity we have

|Φ(µ)| ≤
∑

x∈Aµ

|µ|({x}) = |µ|(Aµ) ≤ |µ|(X) = ||µ|| < ∞.

This shows that the sum is well-defined, and furthermore that Φ is a continuous operator on
M(X). Linearity of Φ follows from the fact that terms in an absolutely convergent series can be
rearranged:

Φ(cµ+ ν) =
∑

x∈Aµ+ν

(cµ+ ν)({x}) =
∑

x∈Aµ+ν

(cµ)({x}) + ν({x}) = c
∑

x∈Aµ

µ({x}) +
∑

x∈Aν

ν({x}).

Hence Φ ∈ M(X)∗.

Suppose there exists a nonzero µ ∈ M(X) such that µ({x}) = 0 for all x ∈ X , and that Φ ∈ C0(X).
Recall the Dirac measure δx defined by δx(y) = 0 if y 6= x and δx(x) = 1. The Dirac measure is a
Radon measure, and by definition of Φ, we have Φ(δx) = 1. However, as an element of C0(X), we
have the action

Φ(δx) =

∫

Φ dδx = Φ(x).

From this we conclude that Φ(x) = 1 for all x ∈ X . But by definition of Φ, we have Φ(|µ|) = 0
since |µ|{x} = 0 for all x ∈ X . As an element of C0(X) we have the action
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Φ(|µ|) =

∫

1 · d|µ| = |µ|(X).

This forces us to conclude that |µ|(X) = 0, which implies that for all Borel sets E we have
|µ(E)| ≤ |µ|(E) ≤ |µ|(X) = 0, a contradiction since µ is non-zero.

(b) We can identify functions f ∈ C0(N) with sequences {fn} such that fn → 0 as n → ∞. The norm
||f || is given by ||f || = maxn |fn|. We define a map Ψ : l1 → C0(N)

∗ given by

Ψ({an})(f) =
∞
∑

n=1

anfn.

This is well defined, since

∞
∑

n=1

|an| |fn| ≤ ||f ||
∞
∑

n=1

|an| < ∞.

We show Ψ is a bijection by producing an inverse. First, we define

gi(n) =

{

1 if n = i
0 if n 6= i

Then Ψ−1(µ) = {an}, where

ai = Ψ({an})(gi) =

∫

gidµ = µ({i}).

This is well defined, since

∞
∑

n=1

|an| =
∞
∑

n=1

|µ({n})| ≤
∞
∑

n=1

|µ|({n}) ≤ |µ|(N) < ∞.

It is easy to see that Ψ is linear, hence it only remains to show that Ψ is an isometry. We have
already seen that

|Ψ({an})(f)| ≤ ||f || · ||{an}||l1,

hence ||Ψ({an})|| ≤ ||{an}||. We define the functions hi ∈ C0(N) as (using the sgn function defined
on page 46):

hi(n) =

{

(sgn an) if n ≤ i
0 if n > i

Now since

||Ψ({an})|| = sup
f∈C0(N),||f ||=1

|Ψ({an})(f)|,
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and ||hi|| = 1, we conclude that

||Ψ({an})|| ≥ |Ψ({an})(hi)| =
i
∑

n=1

|an|.

Letting i → ∞, we see that ||Ψ({an})|| = ||{an}|| and hence Ψ is an isometric isomorphism.

The fact that (l1)∗ ≡ l∞ is a direct consequence of Theorem 6.15.

Problem 7.24
Find examples of sequences {µn} in M(R) such that

a. µn → 0 vaguely, but ||µn|| 9 0.
b. µn → 0 vaguely, but

∫

fdµn 9 0 for some bounded measurable function f with compact support.
c. µn ≥ 0 and µn → 0 vaguely, but there exists x ∈ R such that Fn(x) 9 0 (notation as in

Proposition 7.19).

Solution:
(a) Let µn = δn, where δn is the Radon measure defined in the solution to the previous exercise. Then
for all f ∈ C0(R), we have

∫

fdµn = f(n) → 0

as n → ∞. Hence µn → 0 vaguely. However, ||µn|| = |δn|(R) = 1 for all positive integers n.

(b) Let µn = δ1/n − δ−1/n. Then for any f ∈ C0(R), we have

∫

fdµn = f(1/n)− f(−1/n) → 0

as n → ∞. Hence µn → 0 vaguely. However, the function

f(x) = (sgnx) χ[−2,2]

is bounded and measurable with compact support, and
∫

fdµn = 1−−1 = 2 for all positive integers
n.

(c) Let µn = δ−n. Then µn ≥ 0 and for any f ∈ C0(R), we have

∫

fdµn = f(−n) → 0
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as n → ∞. Hence µn → 0 vaguely. However, Fn(0) = µn((−∞, 0]) = 1 for all positive integers n.

Problem 7.27
Let Ck([0, 1]) be as in Exercise 9 in §5.1. If I ∈ Ck([0, 1])∗, there exist µ ∈ M([0, 1]) and constants
c0, . . . , ck−1, all unique, such that

I(f) =

∫

f (k)dµ+

k−1
∑

0

cjf
(j)(0).

(The functionals f 7→ f (j)(0) could not be replaced by any set of k functionals that separate points in
the space of polynomials of degree < k.)

Solution:
Take any f ∈ Ck([0, 1]). By Taylor’s Theorem, we can Taylor expand about 0 and obtain

f(x) =
k−1
∑

n=1

f (n)(0)

n!
xn +

∫ x

0

(x− t)k−1

(k − 1)!
f (k)(t)dt.

Let I ∈ Ck([0, 1])∗. The bounded linear functional I is defined on a dense subset of C[0, 1], hence
can be uniquely extended to a bounded linear functional on all of C[0, 1]. By the Riesz Representation
Theorem, there exists a Radon measure ν ∈ M([0, 1]) such that I(f) =

∫

fdν. Then we have

I(f) =

∫ 1

0

k−1
∑

n=1

f (n)(0)

n!
xndν +

∫ 1

0

∫ x

0

(x− t)k−1

(k − 1)!
f (k)(t) dt dν(x)

=

k−1
∑

n=1

cnf
(n)(0) +

∫ 1

0

∫ 1

0

χ[0,x](t)
(x− t)k−1

(k − 1)!
f (k)(t) dt dν(x)

=
k−1
∑

n=1

cnf
(n)(0) +

∫ 1

0

∫ 1

0

χ[0,x](t)
(x− t)k−1

(k − 1)!
f (k)(t) dν(x) dt

=

k−1
∑

n=1

cnf
(n)(0) +

∫ 1

0

∫ 1

0

χ[t,1](x)
(x− t)k−1

(k − 1)!
f (k)(t) dν(x) dt

=

k−1
∑

n=1

cnf
(n)(0) +

∫ 1

0

f (k)(t)

∫ 1

t

(x− t)k−1

(k − 1)!
dν(x) dt

=
k−1
∑

n=1

cnf
(n)(0) +

∫ 1

0

f (k)(t)g(t)dt.

where cn =
∫ 1

0
xn/n! dν and g(t) =

∫ 1

t
(x−t)k−1

(k−1)!
dν(x). In the preceding computation, the order of inte-

grals was switched by Fubini’s Theorem. From the discussion on page 223, we know that dµ = g(t)dt,
where dt is Lebesgue measure, defines a Radon measure.
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We must now show uniqueness. For any integer 0 ≤ n < k, we substitute the function xn

into the formula for I to obtain

I(xn) = n! cn.

Therefore, the constants c0, . . . , ck−1 are uniquely determined. If there exists another µ̃ ∈ M([0, 1])
with the desired property, then since the c0, . . . , ck−1 are unique, we see that

∫

f (k)dµ =

∫

f (k)dµ̃,

for all f ∈ Ck([0, 1]). To show the two measures are equal, it suffices to show that µ([0, c]) = µ̃([0, c])
for all c ∈ [0, 1]. If we let f (k) = 1, we see that µ([0, 1]) = µ̃([0, 1]). Let c ∈ [0, 1). For all positive

integers n such that c + 1/n ≤ 1, we can define functions fn ∈ Ck([0, 1]) such that f
(k)
n = 1 on [0, c],

f
(k)
n = 0 on [c + 1/n, 1], and f

(k)
n is linear on [c, c + 1/n]. Pointwise, we have f

(k)
n → χ[0,c]. Then by

the Dominated Convergence Theorem, we see that

µ([0, c]) =

∫ c

0

dµ = lim

∫ 1

0

f (k)
n dµ = lim

∫ 1

0

f (k)
n dµ̃ =

∫ c

0

dµ̃ = µ̃([0, c]).

Problem 7.30
Let µ and ν be Radon measures on X and Y , not necessarily σ−finite. If f is a nonnegative LSC
function on X × Y , then x 7→

∫

fx dν and y 7→
∫

f y dµ are Borel measurable and
∫

f d(µ×̂ν) =
∫ ∫

f dµdν =
∫ ∫

f dνdµ.

Solution:
Warning: this solution seems sketchy to me. I don’t fell great about it. Suggestions are welcome.

We define the functions Φf : X → C and Ψf : Y → C as

Φf (x) =

∫

fx dν,

Ψf (y) =

∫

f y dµ.

By Lemma 7.24, if f ∈ Cc(X × Y ), then Φf and Ψf are continuous. If f is a nonnegative LSC
function on X × Y , then so are fx and f y, hence by Corollary 7.13 we have

Φf (x) =

∫

fx dν

= sup

{
∫

g dν : g ∈ Cc(Y ), 0 ≤ g ≤ fx

}

= sup

{
∫

gx dν : g ∈ Cc(X × Y ), 0 ≤ g ≤ f

}

= sup {Φg(x) : g ∈ Cc(X × Y ), 0 ≤ g ≤ f}
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Since the supremum of a family of measurable functions is measurable, we see that Φf (x) is a
measurable function. The same argument shows that Ψf(x) is a measurable function. The equality
of the supremums of the two different families in the previous argument is justified as follows. If
g ∈ Cc(X × Y ) and 0 ≤ g ≤ f , it is immediate that gx ∈ Cc(Y ) and 0 ≤ gx ≤ fx. On the other hand,
if g ∈ Cc(Y ) and 0 ≤ g ≤ fx, by Urysohn’s lemma we can extend g to a function g̃ ∈ Cc(X × Y ) with
0 ≤ g̃ ≤ f , such that g̃x = g.

Next, we notice that by the Fubini-Tonelli theorem for Radon products, if g ∈ Cc(X × Y ), then

∫

g d(µ×̂ν) =

∫ ∫

g dµdν =

∫ ∫

g dνdµ

since the support of g has finite measure, hence the integrals can be taken over a set of finite measure.
By applying Corollary 7.13, if f is nonnegative and LSC, then

∫

f d(µ×̂ν) = sup

{
∫

g d(µ×̂ν) : g ∈ Cc(X × Y ), 0 ≤ g ≤ f

}

= sup

{
∫ ∫

g dµdν : g ∈ Cc(X × Y ), 0 ≤ g ≤ f

}

=

∫ ∫

f dµdν

The same argument shows
∫

f d(µ×̂ν) =
∫ ∫

f dνdµ.
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