Folland: Real Analysis, Chapter 7
Sébastien Picard

Problem 7.2
Let 1 be a Radon measure on X.

a. Let N be the union of all open U C X such that u(U) = 0. Then N is open and u(N) = 0.
The complement of N s called the support of p.

b. z € supp(p) iff [ fdu >0 for every f € C.(X,[0,1]) such that f(x) > 0.

Solution:

a) Since N is the union of open sets, we know that NV is open. Therefore, by inner re ularity we
g
have

w(N) =sup{u(K): K C N, K compact}.

For any K C N such that K is compact, we see that K is covered by finitely many sets U; C X,
i=1,...,n, such that p(U;) = 0. Therefore

p(K) < ZM(UE) =0.

Since the measure of N is the supremum over all such p(K'), we have u(N) = 0.

(b) Suppose x € supp(p). Take f € C.(X,[0,1]) such that f(z) =c¢ > 0. Now, V = f71((¢/2,1)) is
an open set by continuity. Since x € V', we have p(V) > 0. Hence

JEE /V fp > Su(V) > 0.

On the other hand, let z € X and suppose [ fdu > 0 for every f € C.(X,[0,1]) such that
f(z) > 0. Since singletons are compact, {z} is compact. Take any open set U such that x € U. By
Urysohn’s lemma, there exists a function g € C.(X, [0, 1]) such that g(x) = 1 and supp(g) C U. Then
by formula (7.3) in the statement of the Riesz Representation theorem,

M(U)Zsup{/fdu:fGCc(X),f<U}Z/Qdu>0-

Problem 7.4
Let X be a LCH space.
a. If f € C.(X,]0,00)), then f~'([a,0)) is a compact Gs set for all a > 0.
b. If K C X is a compact G5 set, there exists f € C.(X,[0,1]) such that K = f~'({1}).



c. The o—algebra B of Baire sets is the o—algebra generated by the compact Gy sets.

Solution:
(a) Since f is continuous, f~!(a — 1/n,00) is open for all positive integers n. By the equality

£ (fa00)) = () 470~ o0),

we see that f~!([a,00)) is a G5 set.

To show compactness, we first notice that by continuity f~!([a,0)) is closed. Since a > 0,
we have f~!([a,00)) C suppf. Since the support of f is compact, and closed subsets of compact sets
are compact, we see that f~1([a, 00)) is compact.

(b) Write

A
i=1

where U; are open sets. By Proposition 4.31, there exists a precompact open W such that K C W C

U;. Define the open sets V,, as
vV, = (ﬂ UZ-) nw.
i=1

Notice that K = NV,, and that V; D --- D V; D V;4y D .... From Urysohn’s lemma, for each
positive integer n, there is an f, € C.(X) such that 0 < f,, < 1, supp(f) € V,, and f =1 on K.
Define

- 1
f=2 5t
k=1
The function f(x) is well-defined since the pointwise sum converges absolutely:
- 1 = 1
D glh@l <) gr=1<oe
k=1 k=1
Actually, the sum is absolutely convergent in the uniform norm:
- 1 =1
k=1 k=1

By Theorem 5.1, since BC(X) is a Banach space, every absolutely convergent sequence in BC(X)
converges, hence f € BC(X). The support of each f,, is contained in V,, C W, and hence suppf C W.
Since W is precompact, f has compact support. Since 0 < f < 1, we have f € C.(X, [0, 1]).



We now show K = f~1({1}). Indeed, if x € K, then f,(z) = 1 for all positive integers n,
hence f(z) = > 5 = 1. If z ¢ K, then there exist a positive integer ¢ such that z ¢ V; for all integers
j > 4. Then x ¢ suppf; C V; and f;(x) = 0. Therefore

f(x) :Z%fk <1
k=1

Hence z ¢ f~1({1}).

(c) The oc—algebra B% of Baire sets is by definition generated by the sets (Ref)™!([a, 0)), (Imf)~!([a, 0)),
for all « € R and all f € C.(X). Let A denote the c—algebra generated by compact Gy sets.

Let K be a compact Gs set. Then K = f~'({1}) = f7!([1,00)) for some f € C.(X,][0,1])
by part (b). Then K € B%, and therefore A C B% by Lemma 1.1.

On the other hand, let f € C.(X). First, we assume that f is a non-negative real-valued function.
In this case, if @ > 0, from part (a) we know that f~!([a,00)) € A, and f~!([—a,0) = f71([0,0)) =
X € A. Therefore f~'([a,00)) € A for all a € R.

Next, suppose f € C.(X) is real-valued. We can decompose f as
f=1xp0=fl xpc0=f"=f".

Notice that fT, f~ are non-negative real-valued functions in C,.(X). If a > 0, we have f~([a, 00)) =

(fH)Y([a,0)) € A. Next, notice f~([0,00)) = (f7)71({0}) = ((f7)~((0, 00]))¢, and since

(f)7H(0,00) = [J () H([1/n, 20)),
we have f7!([0,00)) € A. Lastly, we have
FH([=a.00)) = (f7)7H([0.a]) = ((f ) ((a,00)))" = (U(f_)_l([a+ 1/n, OO))) -

Therefore, f~!([a,>)) € A for all a € R.

If f € C.(X) is complex-valued, we decompose f into its real and imaginary components, which
are both real-valued functions in C.(X). Then (Ref) *([a,)) € A, and (Imf)~!([a,00)) € A, for
all a € R. Tt follows that B% C A by Lemma 1.1.

Problem 7.10
If 11 is a Radon measure and f € L'(u) is real-valued, for every e > 0 there exists an LSC function g



and USC' function h such that h < f < g and [(g — h)du < e.

Solution:
First, we decompose f into its positive and real parts:

f=Fxp0—fl xpco=f"—f".

Since f € L'(u), the sets {z : f* >0} and {z : f~ > 0} are o-finite by Proposition 2.20. Hence
by Proposition 7.14, there exists functions ¢, g, such that ¢g; is LSC and ¢g; > f7, go is USC and

g2 < f7, and
€ +
1T A= | gudp,

—§+/#st/@w.

We know that —gs is LSC, so by Proposition 7.11 we have that g := ¢g; — g» is LSC. Futhermore,
9=

Again by Proposition 7.14, there exists functions hq, hy such that hy is USC and hy < [T, he
is LSC and hy > 7, and
—§+/f+du§ /hldu,

£+/f_d,u2/h2d,u.

Since —hy is USC, we have that h := h; — hy is USC. Furthermore, f > h. We now compute

/(g—h)duz /gldu—/g2du—/h1du+/h2du

P T . 5_/’+ € / €
_/fd,u+4 /fd,u+4 fd,u+4+ fdu+4
— €.

Problem 7.11
Suppose that p is a Radon measure on X such that p({x}) =0 for all x € X, and A € Bx satisfies
0 < u(A) < co. Then for any « such that 0 < a < p(A) there is a Borel set B C A such that

u(B) = a.

Solution:
We define



P={BCA: B=UnNA, Uopen,and u(B) < a}.

First, we show that P contains an element that is not the empty set. Since A is non-empty, there
exists an element x € A, and

0=p({z}) =inf{u(V): {z} CV, V open}.

Therefore, there exists an open set V' containing x such that u(V) < a. Hence ) #V N A € P.

We can partially order P by inclusion. Let C be a totally ordered non-empty subset of P. We
show that C has an upper bound in P. Indeed, take

It is clear that U is an upper bound of C. Since the union of open sets is open, we have that UN A
is open in A. Since u(U) < u(A) < oo, we see that U is a o-finite set, and hence by Proposition 7.5
we have

p(U) = sup{p(K): K C U, K compact}.

For any K compact such that K C U, we see that K is covered by finitely many B, € C. Since C
is totally ordered by inclusion, K C B, for some B, € C. Hence

u(K) < u(B,) < a.

By taking the supremum over all such K, we see that u(U) < o. Hence U € P. By Zorn’s lemma,
the set P contains a maximal element B.

We claim that u(B) = «. By contradiction, assume that o — u(B) > 0. Take x € A\B, which

exists since the measure of A\ B is positive. By outer regularity, there exists an open set V' such that
r e ANV and

(V) < a—p(B).
But then BU (AN V) is open in A and

w(BUANYV)) <u(B)+a—puB) <a.

Hence BC BU(ANV)and BU(ANYV) € P, contradicting the maximality of B.



Problem 7.20
Some examples of nonreflexivity of Co(X):

a. If pe M(X), let ®(p) = >, cx u({x}). This sum is well defined, and ® € M(X)*. If there
exists a nonzero y € M(X) such that u({z}) =0 for all x € X, then ® is not in the image of Co(X)
in M(X)* = Cy(X)™.

b. At the other extreme, let X = N with the discrete topology; then Co(X)* = 1' and (I')* =2 [*°.
(Note: Cy(N) is usually denoted by cy.)

Solution:
(a) First, we show that the sum is well defined. Let

A, ={re X :u{z}) >1/n}.
If card(A,,) is infinite, then letting A’ be a countably infinite subset of A,, we see that

p(X) = > u({x}) = (1/n)+ (1/n) + (1/n) + -+ = 0.

rEA}

Hence card(A,,) is finite for all positive integers n. Now define

A, ={re X :pu{z}) >0}

Since A, = UA,, we see that A, is a countable set. Hence by countable additivity we have

()] < Y lul({z}) = [ul(A) < [ul(X) = [lul] < oo

€A,

This shows that the sum is well-defined, and furthermore that ® is a continuous operator on
M(X). Linearity of ® follows from the fact that terms in an absolutely convergent series can be
rearranged:

Clep+v)= Y (entv){ah) = Y (ew({a}) +v{e}) =¢ Y u{a}) + Y v({a}).

Hence ® € M(X)*.
Suppose there exists a nonzero p € M(X) such that u({z}) = 0 for all z € X, and that & € Cy(X).
Recall the Dirac measure ¢, defined by 0,(y) = 0 if y # x and 6,(x) = 1. The Dirac measure is a

Radon measure, and by definition of ®, we have ®(d,) = 1. However, as an element of Cy(X), we
have the action

o(5,) = /(I) ds, = ®(z).

From this we conclude that ®(z) = 1 for all z € X. But by definition of ®, we have ®(|u|) =0
since |p|{z} =0 for all z € X. As an element of Cy(X) we have the action

6



B(luf) = [ 1+ dl = |l (),

This forces us to conclude that |u|(X) = 0, which implies that for all Borel sets E we have
l(E)| < |p|(E) < |p|(X) =0, a contradiction since u is non-zero.

(b) We can identify functions f € Cy(N) with sequences { f,,} such that f,, — 0 as n — co. The norm
| 1] is given by || f|| = max,, | f,|. We define a map ¥ : I' — Cy(N)* given by

U({an})(f Z n f-

This is well defined, since

e o)
S anl Ul < 1£11S Jan] < o0,
n=1 n=1

We show W is a bijection by producing an inverse. First, we define
(n) = 1 itn=1
FV=V0  iftn#i
Then ¥~ (u) = {a,}, where

— U({an})(g) = / gudy = u({i}).

This is well defined, since

D laal = ()l < Y lul({n}) < |ul(N) < o0

It is easy to see that W is linear, hence it only remains to show that W is an isometry. We have
already seen that

W ({an}) (O < I [{an} o,

hence ||V ({a,})|| < |[{an}||. We define the functions h; € Cy(N) as (using the sgn function defined
on page 46):

oy J (sena,) ifn<i
hl(”)_{o ifn>1

Now since

eIl = sup — [W({an})(f)],

fFeCoM),[If]I=1
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and ||h;]| = 1, we conclude that

1T {an DIl 2 [P ({an})(h)l = ) lanl.

Letting ¢ — oo, we see that ||V ({a,})|| = ||{a.}|| and hence ¥ is an isometric isomorphism.

The fact that (I1)* = > is a direct consequence of Theorem 6.15.

Problem 7.24
Find examples of sequences {,} in M(R) such that
a. p, — 0 vaguely, but ||pu,|| - 0.
b. 1, — 0 vaguely, but [ fdu, - 0 for some bounded measurable function f with compact support.
c. p, > 0 and p, — 0 vaguely, but there exists x € R such that F,(z) - 0 (notation as in
Proposition 7.19).

Solution:

(a) Let w, = 6, where 4, is the Radon measure defined in the solution to the previous exercise. Then
for all f € Cy(R), we have

JEEORY

as n — 0o. Hence p, — 0 vaguely. However, ||u,|| = |0,|(R) = 1 for all positive integers n.

(b) Let ptn, = 61/, — 0_1/,- Then for any f € Co(R), we have
[ =10/ = f=1/m) = 0
as n — 0o. Hence u, — 0 vaguely. However, the function
f(z) = (sgnz) X[-22)

is bounded and measurable with compact support, and [ fdu, =1 — —1 = 2 for all positive integers
n.

(c) Let y,, = 0. Then p, > 0 and for any f € Cy(R), we have

[ fdu = 5= =0



as n — oo. Hence u,, — 0 vaguely. However, F,,(0) = u,((—o00,0]) = 1 for all positive integers n.

Problem 7.27
Let C*([0,1]) be as in Exercise 9 in §5.1. If I € C*([0,1])*, there exist u € M([0,1]) and constants
Coy -, Cr1, all unique, such that

k—1
— [ £Odu Y 0)
0

(The functionals f — f9(0) could not be replaced by any set of k functionals that separate points in
the space of polynomials of degree < k.)

Solution:
Take any f € C*([0,1]). By Taylor’s Theorem, we can Taylor expand about 0 and obtain

k—1
N T g
; +/0 F®(t)dt.

(k—1)!
Let I € C*([0,1])*. The bounded linear functional I is defined on a dense subset of C|0, 1], hence
can be uniquely extended to a bounded linear functional on all of C0, 1]. By the Riesz Representation
Theorem, there exists a Radon measure v € M([0,1]) such that I(f) = [ fdv. Then we have

/ v +// 1) dt dv(a)
_Zcﬂ" / / Yo t)f)_lf’“(t) dt du(z)
—chﬂ” R g"t’f)lf%) ()
—chf(” v [ e S vt
—chf(" /f / %dv(m) dt
—chﬂ" v [

where ¢,, = fo " /n! dv and g(t ftl (x(ktl dv(x). In the preceding computation, the order of inte-

grals was switched by Fubini’s Theorem From the discussion on page 223, we know that du = g(t)dt,
where dt is Lebesgue measure, defines a Radon measure.




We must now show uniqueness. For any integer 0 < n < k, we substitute the function z”
into the formula for I to obtain

I(z") =n! c,.

Therefore, the constants ¢y, . . ., cx_1 are uniquely determined. If there exists another i € M([0, 1])
with the desired property, then since the cy,...,cy_1 are unique, we see that

[ #0du= [ 19

for all f € C*([0,1]). To show the two measures are equal, it suffices to show that ([0, c]) = ([0, ¢])
for all ¢ € [0,1]. If we let f*) = 1, we see that u([0,1]) = ([0,1]). Let ¢ € [0,1). For all positive
integers n such that ¢+ 1/n < 1, we can define functions f,, € C*([0, 1]) such that f9 =1 on 0, cl,

" =0 on [c+1/n,1], and £ is linear on [c,c+ 1/n]. Pointwise, we have A X[0,q- Then by
the Dominated Convergence Theorem, we see that

c 1 1 c
u(0.) = [ dp=tim [ g0 =i [ 05~ [ i = (0.

Problem 7.30
Let pv and v be Radon measures on X and Y, not necessarily o—finite. If f is a nonnegative LSC
function on X x Y, then x — [ f, dv and y — [ f¥ du are Borel measurable and [ f d(uxv) =

[ [fdpdv=[[f dvdpu.

Solution:
Warning: this solution seems sketchy to me. I don’t fell great about it. Suggestions are welcome.

We define the functions &5 : X — C and ¥;:Y — C as
(bf(l’) = /fx dl/,
Ur(y) = /fy dp.

By Lemma 7.24, if f € C.(X x Y), then ®; and ¥, are continuous. If f is a nonnegative LSC
function on X x Y, then so are f, and f¥, hence by Corollary 7.13 we have

ble) = [ foav
:sup{/ng:QECc(Y), Oﬁgﬁfz}

:sup{/gde:gECc(XXY), Oﬁgﬁf}
=sup{Py(z) : g€ Ce(X xY), 0<g < f}
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Since the supremum of a family of measurable functions is measurable, we see that ®,(z) is a
measurable function. The same argument shows that W(z) is a measurable function. The equality
of the supremums of the two different families in the previous argument is justified as follows. If
g€ C(X xY)and 0 < g < f, it is immediate that g, € C.(Y) and 0 < g, < f,. On the other hand,
if g€ C.(Y) and 0 < g < f,, by Urysohn’s lemma we can extend g to a function § € C.(X x Y) with
0 < g < f,such that g, = g.

Next, we notice that by the Fubini-Tonelli theorem for Radon products, if g € C.(X X Y'), then

/gd(,u%u)://gdudu://gdydu

since the support of g has finite measure, hence the integrals can be taken over a set of finite measure.
By applying Corollary 7.13, if f is nonnegative and LSC, then

/fd(,u%y):sup{/gd(,uiy):gGC’C(XxY), 0§g§f}
:sup{//gdudyzgeCc(XxY), 0§g§f}

— [ [+ dutv

The same argument shows [ f d(uxv) = [ [ f dvdp.
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